
IBM
®

DB2 Universal Database
™

Application Development Guide:
Building and Running Applications

Version 8

SC09-4825-00

���





IBM
®

DB2 Universal Database
™

Application Development Guide:
Building and Running Applications

Version 8

SC09-4825-00

���



Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993 - 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide


Contents

About This Book . . . . . . . . . . ix

Part 1. The Application
Development Environment . . . . 1

Chapter 1. DB2 Support . . . . . . . . 3
DB2 Application Development Client . . . . 3
Database Manager Instances . . . . . . . 5
DB2 Supported Servers. . . . . . . . . 7
DB2 Supported Software for Building and
Running Applications . . . . . . . . . 8
Supported Software by Platform . . . . . 9

AIX Supported Software for Building and
Running Applications . . . . . . . . 9
HP-UX Supported Software for Building
and Running Applications . . . . . . 11
Linux Supported Software for Building
and Running Applications . . . . . . 12
Solaris Supported Software for Building
and Running Applications . . . . . . 14
Windows Supported Software for Building
and Running Applications . . . . . . 15

Chapter 2. Setup . . . . . . . . . . 19
General Setup Information . . . . . . . 19

Setting Up the Application Development
Environment . . . . . . . . . . . 19
Updating the Database Manager
Configuration File . . . . . . . . . 21
Setting Up the Java Environment . . . . 22
Setting Up the SQL Procedures
Environment . . . . . . . . . . . 23

UNIX . . . . . . . . . . . . . . 24
Setting Up the UNIX Application
Development Environment . . . . . . 25
UNIX Environment Variable Settings . . . 26
Java . . . . . . . . . . . . . . 26
SQL Procedures . . . . . . . . . . 31

Windows . . . . . . . . . . . . . 34
Setting Up the Windows Application
Development Environment . . . . . . 35
Java . . . . . . . . . . . . . . 38
SQL Procedures . . . . . . . . . . 40

Sample Database . . . . . . . . . . 42

Setting Up the sample Database . . . . 42
Creating the sample Database . . . . . 42
Creating the sample Database on Host or
AS/400 and iSeries Servers . . . . . . 44
Cataloging the sample Database . . . . 45
Binding the sample Database Utilities . . 46

Migrating Applications . . . . . . . . 52
Where to Go Next . . . . . . . . . . 55

Chapter 3. Sample Programs and Related
Files . . . . . . . . . . . . . . 57
Sample Files . . . . . . . . . . . . 57
Sample Programs: Structure and Design. . . 62
Sample Programs by Language and
Application Interface . . . . . . . . . 69

C/C++ Samples. . . . . . . . . . 69
DB2 CLI Samples . . . . . . . . . 72
JDBC Samples . . . . . . . . . . 74
SQLJ Samples . . . . . . . . . . 77
Java WebSphere Samples . . . . . . . 79
Java Plugin Samples . . . . . . . . 79
COBOL Samples . . . . . . . . . 80
SQL Procedure Samples . . . . . . . 84
Visual Basic Samples . . . . . . . . 86
Visual C++ Samples . . . . . . . . 88
Windows Management Instrumentation
Samples . . . . . . . . . . . . 88
Object Linking and Embedding (OLE)
Samples . . . . . . . . . . . . 89
Object Linking and Embedding Database
(OLE DB) Table Function Samples . . . 90
Command Line Processor (CLP) Samples 90
REXX Samples . . . . . . . . . . 91
Log Management User Exit Samples . . . 93

Build Files, Makefiles, and Error-Checking
Utilities . . . . . . . . . . . . . 94

Build Files . . . . . . . . . . . 94
Makefiles . . . . . . . . . . . . 97
Error-Checking Utilities . . . . . . . 101

Part 2. Building and Running
Platform-Independent
Applications. . . . . . . . . . 105

© Copyright IBM Corp. 1993 - 2002 iii



Chapter 4. Java . . . . . . . . . . 107
Java Sample Programs . . . . . . . . 107
Java Applet Considerations . . . . . . 109
JDBC . . . . . . . . . . . . . . 111

Building JDBC Applets . . . . . . . 111
Building JDBC Applications . . . . . 112
Building JDBC Routines. . . . . . . 113

SQLJ . . . . . . . . . . . . . . 116
Building SQLJ Programs . . . . . . 116
Building SQLJ Applets . . . . . . . 117
Building SQLJ Applications . . . . . 119
UNIX Build Script for SQLJ Applications
and Applets. . . . . . . . . . . 120
SQLJ Application Options for UNIX . . 122
Windows Batch File for SQLJ
Applications and Applets . . . . . . 122
SQLJ Application Options for Windows 124
Building SQLJ Routines . . . . . . . 125
UNIX Build Script for SQLJ Routines . . 126
SQLJ Stored Procedure Options for UNIX 128
Windows Batch File for SQLJ Routines 129
SQLJ Stored Procedure Options for
Windows . . . . . . . . . . . 131

Chapter 5. SQL Procedures . . . . . . 133
Creating SQL Procedures . . . . . . . 133
Calling SQL Procedures with Client
Applications on UNIX . . . . . . . . 134
Calling SQL Procedures with Client
Applications on Windows . . . . . . . 135
Retaining Intermediate Files for SQL
Procedures . . . . . . . . . . . . 137
Customizing Precompile and Bind Options
for SQL Procedures . . . . . . . . . 138
Backing Up and Restoring SQL Procedures 139
Distributing Compiled SQL Procedures . . 140
Rebinding SQL Procedures. . . . . . . 141

Chapter 6. Calling Stored Procedures . . 143
Calling Stored Procedures with the CALL
Statement . . . . . . . . . . . . 143

Part 3. Building and Running
Platform-Specific Applications . . 145

Chapter 7. AIX . . . . . . . . . . 147
Important Considerations . . . . . . . 148

AIX Export Files for Routines . . . . . 148
AIX Routines and the CREATE Statement 148

Replacing an AIX Shared Library . . . 149
Considerations for Installing COBOL on
AIX . . . . . . . . . . . . . 149

IBM C . . . . . . . . . . . . . 150
Building C Applications on AIX . . . . 150
Build Script for C Applications . . . . 152
AIX C Application Compile and Link
Options . . . . . . . . . . . . 153
Building C Routines on AIX . . . . . 154
Build Script for C Routines . . . . . 158
AIX C Routine Compile and Link Options 159
Building C Multi-Threaded Applications
on AIX . . . . . . . . . . . . 160
Build Script for C Multi-threaded
Applications . . . . . . . . . . 161

VisualAge C++. . . . . . . . . . . 161
Building C++ Applications on AIX . . . 161
Build Script for C++ Applications . . . 163
AIX C++ Application Compile and Link
Options . . . . . . . . . . . . 164
Building C++ Routines on AIX . . . . 165
Build Script for C++ Routines. . . . . 169
AIX C++ Routine Compile and Link
Options . . . . . . . . . . . . 170
Building C++ Multi-Threaded
Applications on AIX . . . . . . . . 171
Build Script for C++ Multi-threaded
Applications . . . . . . . . . . 173

VisualAge C++ Configuration Files . . . . 173
Building VisualAge C++ Programs with
Configuration Files . . . . . . . . 173
Building C++ DB2 API Applications with
Configuration Files . . . . . . . . 174
Building C++ Embedded SQL
Applications with Configuration Files . . 175
Building C++ Stored Procedures with
Configuration Files . . . . . . . . 176
Building C++ User-defined Functions
with Configuration Files . . . . . . 177

IBM COBOL Set for AIX . . . . . . . 179
Configuring the IBM COBOL Compiler
on AIX . . . . . . . . . . . . 179
Building IBM COBOL Applications on
AIX . . . . . . . . . . . . . 180
Build Script for IBM COBOL Applications 181
AIX IBM COBOL Application Compile
and Link Options . . . . . . . . . 182
Building IBM COBOL Routines on AIX 183
Build Script for IBM COBOL Routines 184

iv Building and Running Applications



AIX IBM COBOL Routine Compile and
Link Options . . . . . . . . . . 185

Micro Focus COBOL . . . . . . . . . 186
Configuring the Micro Focus COBOL
Compiler on AIX . . . . . . . . . 186
Building Micro Focus COBOL
Applications on AIX . . . . . . . . 187
Build Script for Micro Focus COBOL
Applications . . . . . . . . . . 189
AIX Micro Focus COBOL Application
Compile and Link Options . . . . . . 190
Building Micro Focus COBOL Routines
on AIX . . . . . . . . . . . . 190
Build Script for Micro Focus COBOL
Routines . . . . . . . . . . . . 192
AIX Micro Focus COBOL Routine
Compile and Link Options . . . . . . 193

REXX . . . . . . . . . . . . . . 194
Building REXX Applications on AIX . . 194

Chapter 8. HP-UX . . . . . . . . . 197
HP-UX C . . . . . . . . . . . . 197

Building C Applications on HP-UX . . . 197
Build Script for C Applications . . . . 199
HP-UX C Application Compile and Link
Options . . . . . . . . . . . . 200
Building C Routines on HP-UX . . . . 201
Build Script for C Routines . . . . . 205
HP-UX C Routine Compile and Link
Options . . . . . . . . . . . . 206
Building C Multi-Threaded Applications
on HP-UX . . . . . . . . . . . 207
Build Script for C Multi-threaded
Applications . . . . . . . . . . 208

HP-UX C++. . . . . . . . . . . . 209
Building C++ Applications on HP-UX . . 209
Build Script for C++ Applications . . . 211
HP-UX C++ Application Compile and
Link Options . . . . . . . . . . 212
Building C++ Routines on HP-UX . . . 213
Build Script for C++ Routines. . . . . 217
HP-UX C++ Routine Compile and Link
Options . . . . . . . . . . . . 218
Building C++ Multi-Threaded
Applications on HP-UX . . . . . . . 219
Build Script for C++ Multi-threaded
Applications . . . . . . . . . . 220

Micro Focus COBOL . . . . . . . . . 221
Configuring the Micro Focus COBOL
Compiler on HP-UX . . . . . . . . 221

Building Micro Focus COBOL
Applications on HP-UX . . . . . . . 222
Build Script for Micro Focus COBOL
Applications . . . . . . . . . . 224
HP-UX Micro Focus COBOL Application
Compile and Link Options . . . . . . 225
Building Micro Focus COBOL Routines
on HP-UX . . . . . . . . . . . 226
Build Script for Micro Focus COBOL
Routines . . . . . . . . . . . . 227
HP-UX Micro Focus COBOL Routine
Compile and Link Options . . . . . . 228

Chapter 9. Linux. . . . . . . . . . 231
Linux C . . . . . . . . . . . . . 231

Building C Applications on Linux . . . 231
Build Script for C Applications . . . . 233
Linux C Application Compile and Link
Options . . . . . . . . . . . . 234
Building C Routines on Linux. . . . . 235
Build Script for C Routines . . . . . 239
Linux C Routine Compile and Link
Options . . . . . . . . . . . . 240
Building C Multi-Threaded Applications
on Linux . . . . . . . . . . . . 241
Build Script for C Multi-threaded
Applications . . . . . . . . . . 242

Linux C++ . . . . . . . . . . . . 242
Building C++ Applications on Linux . . 242
Build Script for C++ Applications . . . 244
Linux C++ Application Compile and Link
Options . . . . . . . . . . . . 245
Building C++ Routines on Linux . . . . 246
Build Script for C++ Routines. . . . . 250
Linux C++ Routine Compile and Link
Options . . . . . . . . . . . . 251
Building C++ Multi-Threaded
Applications on Linux . . . . . . . 252
Build Script for C++ Multi-threaded
Applications . . . . . . . . . . 252

Chapter 10. Solaris . . . . . . . . . 255
Forte C . . . . . . . . . . . . . 255

Building C Applications on Solaris . . . 255
Build Script for C Applications . . . . 257
Solaris C Application Compile and Link
Options . . . . . . . . . . . . 258
Building C Routines on Solaris . . . . 260
Build Script for C Routines . . . . . 263

Contents v



Solaris C Routine Compile and Link
Options . . . . . . . . . . . . 264
Building C Multi-Threaded Applications
on Solaris . . . . . . . . . . . 265
Build Script for C Multi-threaded
Applications . . . . . . . . . . 267

Forte C++ . . . . . . . . . . . . 267
Building C++ Applications on Solaris . . 268
Build Script for C++ Applications . . . 269
Solaris C++ Application Compile and
Link Options . . . . . . . . . . 271
Building C++ Routines on Solaris . . . 273
Build Script for C++ Routines. . . . . 276
Solaris C++ Routine Compile and Link
Options . . . . . . . . . . . . 277
Building C++ Multi-Threaded
Applications on Solaris . . . . . . . 278
Build Script for C++ Multi-threaded
Applications . . . . . . . . . . 280

Micro Focus COBOL . . . . . . . . . 281
Configuring the Micro Focus COBOL
Compiler on Solaris . . . . . . . . 281
Building Micro Focus COBOL
Applications on Solaris . . . . . . . 281
Build Script for Micro Focus COBOL
Applications . . . . . . . . . . 283
Solaris Micro Focus COBOL Application
Compile and Link Options . . . . . . 284
Building Micro Focus COBOL Routines
on Solaris . . . . . . . . . . . 284
Build Script for Micro Focus COBOL
Routines . . . . . . . . . . . . 286
Solaris Micro Focus COBOL Routine
Compile and Link Options . . . . . . 287

Chapter 11. Windows Operating Systems 289
WCHARTYPE CONVERT Precompile
Option . . . . . . . . . . . . . 289
Object Linking and Embedding Database
(OLE DB) Table Functions . . . . . . . 290
Windows Management Instrumentation
(WMI) . . . . . . . . . . . . . 291
Microsoft Visual Basic . . . . . . . . 291

Building ADO Applications with Visual
Basic . . . . . . . . . . . . . 291
Building RDO Applications with Visual
Basic . . . . . . . . . . . . . 294
Object Linking and Embedding (OLE)
Automation with Visual Basic. . . . . 296

Microsoft Visual C++ . . . . . . . . 297

Building ADO Applications with Visual
C++ . . . . . . . . . . . . . 297
Object Linking and Embedding (OLE)
Automation with Visual C++ . . . . . 299
Building C/C++ Applications on
Windows . . . . . . . . . . . 300
Batch File for C/C++ Applications . . . 302
Windows C/C++ Application Compile
and Link Options . . . . . . . . . 303
Building C/C++ Routines on Windows 304
Batch File for C/C++ Routines . . . . 307
Windows C/C++ Routine Compile and
Link Options . . . . . . . . . . 309

IBM VisualAge COBOL . . . . . . . . 310
Configuring the IBM COBOL Compiler
on Windows . . . . . . . . . . 310
Building IBM COBOL Applications on
Windows. . . . . . . . . . . . 311
Batch File for IBM COBOL Applications 312
Windows IBM COBOL Application
Compile and Link Options . . . . . . 313
Building IBM COBOL Routines on
Windows . . . . . . . . . . . 314
Batch File for IBM COBOL Routines . . 315
Windows IBM COBOL Routine Compile
and Link Options . . . . . . . . . 316

Micro Focus COBOL . . . . . . . . . 316
Configuring the Micro Focus COBOL
Compiler on Windows . . . . . . . 316
Building Micro Focus COBOL
Applications on Windows . . . . . . 317
Batch File for Micro Focus COBOL
Applications . . . . . . . . . . 319
Windows Micro Focus COBOL
Application Compile and Link Options . 320
Building Micro Focus COBOL Routines
on Windows . . . . . . . . . . 320
Batch File for Micro Focus COBOL
Routines . . . . . . . . . . . . 322
Windows Micro Focus COBOL Routine
Compile and Link Options . . . . . . 322

Object REXX . . . . . . . . . . . 323
Building Object REXX Applications on
Windows . . . . . . . . . . . 323

Part 4. Appendixes . . . . . . . 325

Appendix A. DB2 Universal Database
technical information . . . . . . . . 327

vi Building and Running Applications



Overview of DB2 Universal Database
technical information . . . . . . . . 327

Categories of DB2 technical information 328
Printing DB2 books from PDF files . . . . 335
Ordering printed DB2 books . . . . . . 336
Accessing online help . . . . . . . . 336
Finding topics by accessing the DB2
Information Center from a browser . . . . 338
Finding product information by accessing
the DB2 Information Center from the
administration tools . . . . . . . . . 340
Viewing technical documentation online
directly from the DB2 HTML Documentation
CD. . . . . . . . . . . . . . . 341
Updating the HTML documentation installed
on your machine . . . . . . . . . . 342
Copying files from the DB2 HTML
Documentation CD to a Web Server. . . . 344
Troubleshooting DB2 documentation search
with Netscape 4.x . . . . . . . . . . 344

Searching the DB2 documentation . . . . 345
Online DB2 troubleshooting information . . 346
Accessibility . . . . . . . . . . . 347

Keyboard Input and Navigation . . . . 347
Accessible Display . . . . . . . . 348
Alternative Alert Cues . . . . . . . 348
Compatibility with Assistive Technologies 348
Accessible Documentation . . . . . . 348

DB2 tutorials . . . . . . . . . . . 348
DB2 Information Center for topics . . . . 349

Appendix B. Notices . . . . . . . . 351
Trademarks . . . . . . . . . . . . 354

Index . . . . . . . . . . . . . 357

Contacting IBM . . . . . . . . . . 363
Product information . . . . . . . . . 363

Contents vii



viii Building and Running Applications



About This Book

The Application Development Guide is a three-volume book that describes what
you need to know about coding, debugging, building, and running DB2
applications:
v Application Development Guide: Programming Client Applications contains what

you need to know to code standalone DB2 applications that run on DB2
clients. It includes information on:
– Programming interfaces that are supported by DB2. High-level

descriptions are provided for DB2 Developer’s Edition, supported
programming interfaces, facilities for creating Web applications, and
DB2-provided programming features, such as routines and triggers.

– The general structure that a DB2 application should follow.
Recommendations are provided on how to maintain data values and
relationships in the database, authorization considerations are described,
and information is provided on how to test and debug your application.

– Embedded SQL, both dynamic and static. The general considerations for
embedded SQL are described, as well as the specific issues that apply to
the usage of static and dynamic SQL in DB2 applications.

– Supported host and interpreted languages, such as C/C++, COBOL, Perl,
and REXX, and how to use embedded SQL in applications that are
written in these languages.

– Java (both JDBC and SQLj), and considerations for building Java
applications that use WebSphere Application Servers.

– The IBM OLE DB Provider for DB2 Servers. General information is
provided about IBM OLE DB Provider support for OLE DB services,
components, and properties. Specific information is also provided about
Visual Basic and Visual C++ applications that use the OLE DB interface
for ActiveX Data Objects (ADO).

– National language support issues. General topics, such as collating
sequences, the derivation of code pages and locales, and character
conversions are described. More specific issues such as DBCS code
pages, EUC character sets, and issues that apply in Japanese and
Traditional Chinese EUC and UCS-2 environments are also described.

– Transaction management. Issues that apply to applications that perform
multisite updates, and to applications that perform concurrent
transactions, are described.

– Applications in partitioned database environments. Directed DSS, local
bypass, buffered inserts, and troubleshooting applications in partitioned
database environments are described.

© Copyright IBM Corp. 1993 - 2002 ix



– Commonly used application techniques. Information is provided on how
to use generated and identity columns, declared temporary tables, and
how to use savepoints to manage transactions.

– The SQL statements that are supported for use in embedded SQL
applications.

– Applications that access host and iSeries environments. The issues that
pertain to embedded SQL applications that access host and iSeries
envirionments are described.

– The simulation of EBCDIC binary collation.
v Application Development Guide: Programming Server Applications contains what

you need to know for server-side programming including routines, large
objects, user-defined types, and triggers. It includes information on:
– Routines (stored procedures, user-defined functions, and methods),

including:
- Routine performance, security, library management considerations, and

restrictions.
- Registering and writing routines, including the CREATE statements

and debugging.
- Procedure parameter modes and parameter handling.
- Procedure result sets.
- UDF features including scratchpads and scalar and table functions.
- SQL procedures including debugging, and condition handling.
- Parameter styles, authorizations, and binding of external routines.
- Language-specific considerations for C, Java, and OLE automation

routines.
- Invoking routines
- Function selection and passing distinct types and LOBs to functions.
- Code pages and routines.

– Large objects, including LOB usage and locators, reference variables, and
CLOB data.

– User-defined distinct types, including strong typing, defining and
dropping UDTs, creating tables with structured types, using distinct
types and typed tables for specific applications, manipulating distinct
types and casting between them, and performing comparisons and
assignments with distinct types, including UNION operations on
distinctly typed columns.

– User-defined structured types, including storing instances and
instantiation, structured type hierarchies, defining structured type
behavior, the dynamic dispatch of methods, the comparison, casting, and
constructor functions, and mutator and observer methods for structured
types.

x Building and Running Applications



– Typed tables, including creating, dropping, substituting, storing objects,
defining system-generated object identifiers, and constraints on object
identifier columns.

– Reference types, including relationships between objects in typed tables,
semantic relationships with references, and referential integrity versus
scoped references.

– Typed tables and typed views, including structured types as column
types, transform functions and transform groups, host language program
mappings, and structured type host variables.

– Triggers, including INSERT, UPDATE, and DELETE triggers, interactions
with referential constraints, creation guidelines, granularity, activation
time, transition variables and tables, triggered actions, multiple triggers,
and synergy between triggers, constraints, and routines.

v Application Development Guide: Building and Running Applications contains
what you need to know to build and run DB2 applications on the operating
systems supported by DB2:
– AIX
– HP-UX
– Linux
– Solaris
– Windows

It includes information on:
– How to set up your application development environment, including

specific instructions for Java and SQL procedures, how to set up the
sample database, and how to migrate your applications from previous
versions of DB2.

– DB2 supported servers and software to build applications, including
supported compilers and interpreters.

– The DB2 sample program files, makefiles, build files, and error-checking
utility files.

– How to build and run Java applets, applications, and routines.
– How to build and run SQL procedures.
– How to build and run C/C++ applications and routines.
– How to build and run IBM and Micro Focus COBOL applications and

routines.
– How to build and run REXX applications on AIX and Windows.
– How to build and run applications with ActiveX Data Objects (ADO)

using Visual Basic and Visual C++ on Windows.
– How to build and run applications with remote data objects using Visual

C++ on Windows.

About This Book xi



xii Building and Running Applications



Part 1. The Application Development Environment

© Copyright IBM Corp. 1993 - 2002 1



2 Building and Running Applications



Chapter 1. DB2 Support

DB2 Application Development Client . . . . 3
Database Manager Instances . . . . . . . 5
DB2 Supported Servers. . . . . . . . . 7
DB2 Supported Software for Building and
Running Applications . . . . . . . . . 8
Supported Software by Platform . . . . . 9

AIX Supported Software for Building and
Running Applications . . . . . . . . 9

HP-UX Supported Software for Building
and Running Applications . . . . . . 11
Linux Supported Software for Building
and Running Applications . . . . . . 12
Solaris Supported Software for Building
and Running Applications . . . . . . 14
Windows Supported Software for Building
and Running Applications . . . . . . 15

This volume of the Application Development Guide describes DB2 support for
application development. It provides the information you need to set up your
environment for developing DB2 applications, and gives step-by-step
instructions to compile, link, and run these applications in this environment. It
explains how to build applications using the DB2 Application Development
(DB2 AD) Client for DB2 Universal Database Version 8 on the following
platforms:
v AIX
v HP-UX
v Linux
v Solaris Operating Environment
v Windows operating systems

DB2 Application Development Client

The DB2 Application Development (DB2 AD) Client provides the tools and
environment you need to develop applications that access DB2 servers and
application servers that implement the Distributed Relational Database
Architecture (DRDA).

You can build and run DB2 applications with a DB2 AD Client installed. You
can also run DB2 applications on these DB2 clients:
v DB2 Run-Time Client
v DB2 Administration Client

The DB2 AD Clients for the platforms described in this book include the
following:
v Precompilers for C/C++, COBOL, and Fortran, (providing the language is

supported for that platform).
v Embedded SQL application support, including programming libraries,

include files and code samples.

© Copyright IBM Corp. 1993 - 2002 3



v DB2 Call Level Interface (DB2 CLI) application support, including
programming libraries, include files, and code samples to develop
applications which are easily ported to ODBC and compiled with an ODBC
SDK. An ODBC SDK is available from Microsoft for Windows operating
systems, and from various other vendors for many of the other supported
platforms. For Windows operating systems, DB2 clients contain an ODBC
driver that supports applications developed with the Microsoft ODBC
Software Developer’s Kit. For all other platforms, DB2 clients contain an
optionally installed ODBC driver that supports applications that can be
developed with an ODBC SDK for that platform, if one exists. Only DB2
Clients for Windows operating systems contain an ODBC driver manager.

v DB2 Java Enablement, which includes DB2 Java Database Connectivity
(DB2 JDBC) support to develop Java applications and applets, and DB2
embedded SQL for Java (DB2 SQLJ) support to develop Java embedded
SQL applications and applets.

v Java Development Kit (JDK). JDK 1.3.1 and Java Runtime Environment
(JRE) 1.3.1 from IBM for AIX, IBM Developer Kit and Runtime
Environment, Version 1.3.1, for Linux and for Windows, HP-UX Software
Developer’s Kit and Runtime Environment 1.3.1 for HP-UX, and the Java
Development Kit 1.3.1 for Solaris from Sun Microsystems. Except for
Solaris, the respective JDK for each operating system will be installed if any
components are selected for install that require Java to run. If none are
selected, the JDK can still be selected to be installed. On Solaris, JDK 1.3.1,
which is shipped with DB2, must be installed by the user.

v ActiveX Data Objects (ADO) and Object Linking and Embedding (OLE)
Automation Routines (UDFs and Stored Procedures) on Windows
operating systems, including code samples implemented in Microsoft Visual
Basic and Microsoft Visual C++. Also, code samples with Remote Data
Objects (RDO) implemented in Microsoft Visual Basic.

v Object Linking and Embedding Database (OLE DB) table functions on
Windows operating systems.

v DB2 Development Center, a graphical application that supports the rapid
development of routines (stored procedures and user-defined functions),
and structured types. The Development Center provides a single
development environment that supports the entire DB2 family ranging from
the workstation to z/OS. You can launch the Development Center as a
stand-alone application or from a DB2 Universal Database center, such as
the Control Center, the Command Center, or the Task Center. The
Development Center is implemented with Java, and all database
connections are managed by using a Java Database Connectivity (JDBC)
API. The Development Center also provides a DB2 Development Add-In for
each of the following development environments:
– Microsoft Visual C++, Version 6
– Microsoft Visual Basic, Version 6

4 Building and Running Applications



– Microsoft Visual InterDev, Version 6
v Interactive SQL through the Command Center or Command Line Processor

(CLP) to prototype SQL statements or to perform ad hoc queries against the
database.

v A set of documented APIs to enable other application development tools to
implement precompiler support for DB2 directly within their products. For
example, IBM COBOL on AIX uses this interface. Information on the set of
Precompiler Services APIs is available from the PDF file, prepapi.pdf, at the
anonymous FTP site:

ftp://ftp.software.ibm.com/ps/products/db2/info/

v An SQL92 and MVS Conformance Flagger, which identifies embedded
SQL statements in applications that do not conform to the ISO/ANSI
SQL92 Entry Level standard, or which are not supported by DB2 UDB for
z/OS and OS/390. If you migrate applications developed on a workstation
to another platform, the Flagger saves you time by showing syntax
incompatibilities.

Related reference:

v “PRECOMPILE” in the Command Reference

v “AIX Supported Software for Building and Running Applications” on page
9

v “HP-UX Supported Software for Building and Running Applications” on
page 11

v “Linux Supported Software for Building and Running Applications” on
page 12

v “Solaris Supported Software for Building and Running Applications” on
page 14

v “Windows Supported Software for Building and Running Applications” on
page 15

Database Manager Instances

DB2® supports multiple database manager instances on the same machine. A
database manager instance has its own configuration files, directories, and
databases.

Each database manager instance can manage several databases. However, a
given database belongs to only one instance. The following figure shows this
relationship.

Chapter 1. DB2 Support 5

ftp://ftp.software.ibm.com/ps/products/db2/info/


Database manager instances give you the flexibility to have multiple database
environments on the same machine. For example, you can have one database
manager instance for development, and another instance for production.

With UNIX® servers you can have different DB2 versions on different
database manager instances. For example, you can have one database
manager instance running DB2 Universal Database Version 7.1, and another
running DB2 Universal Database Version 8.1. Prior to DB2 Version 8, within a
version level only one release and FixPak level are supported. For example,
DB2 Version 7.1 and DB2 Version 7.2 cannot coexist on a UNIX server. With
DB2 Version 8, multiple FixPak levels can coexist on the same UNIX server.

With Windows® servers, you must have the same DB2 version, release, and
FixPak level on each database manager instance. You cannot have one
database manager instance running DB2 Universal Database Version 7.1 and
another instance running DB2 Universal Database Version 8.1.

You need to know the following for each instance you use:

Database

Connect to

Machine

Database Manager
Instance

Database Manager
Instance

Database

Table TableTable TableTable Table

User/
Application

Figure 1. Database Manager Instances

6 Building and Running Applications



instance name
For UNIX platforms, this is a valid user name that you specify when
you create the database manager instance.

For Windows operating systems, this is an alphanumeric string of up
to eight characters. An instance named ″DB2″ is created for you
during install.

instance directory
The home directory where the instance is located.

For UNIX platforms, the instance directory is $HOME/sqllib, where
$HOME is the home directory of the instance owner.

For Windows operating systems, the instance directory is
%DB2PATH%\instance_name. The variable %DB2PATH% determines where
DB2 is installed. The default installation value for %DB2PATH% is
\Program Files\IBM\SQLLIB, so depending on which drive DB2 is
installed, %DB2PATH% will point to drive:\Program Files\IBM\SQLLIB,
unless the default value is changed.

The instance path on Windows servers is created based on either:
%DB2PATH%\%DB2INSTANCE%

(for example, C:\Program Files\IBM\SQLLIB\DB2)

or, if DB2INSTPROF is defined:
%DB2INSTPROF%\%DB2INSTANCE%

(for example, C:\PROFILES\DB2)

The DB2INSTPROF environment variable is used on Windows servers
to support running DB2 on a network drive for which the client
machine has only read access. In this case, DB2 will be set to point to
drive:\Program Files\IBM\SQLLIB, and DB2INSTPROF will be set to
point to a local path (for example, C:\PROFILES) which will contain all
instance specific information such as catalogs and configurations,
since DB2 requires update access to these files.

DB2 Supported Servers

You use the DB2 AD client to develop applications that will run on a specific
operating system. However, your applications can access remote databases on
the following operating system servers:
v DB2 for AIX
v DB2 for HP-UX
v DB2 for Linux

Chapter 1. DB2 Support 7



v DB2 for OS/2
v DB2 for NUMA-Q
v DB2 for Solaris
v DB2 for Windows NT/2000/XP/.NET Server
v Distributed Relational Database Architecture (DRDA)-compliant application

servers, such as:
– DB2 for z/OS and OS/390
– DB2 for AS/400 and iSeries
– DB2 for VSE & VM (formerly SQL/DS for VM and VSE)
– DRDA-compliant application servers from database vendors other than

IBM.

Notes:

1. DB2 Version 8 HP-UX 64-bit servers do not support running DB2 Version 7
64-bit local applications.

2. DB2 for OS/2 is not available for DB2 Version 8
3. DB2 for NUMA-Q runs on the PTX operating system, and is only available

for DB2 Version 7
4. DB2 Version 8 Windows 64-bit servers support connections from DB2

Version 6 and Version 7 32-bit clients only for SQL requests. Connections
from Version 7 64-bit clients are not supported.

DB2 Supported Software for Building and Running Applications

DB2 Version 8 supports compilers, interpreters, and related software for the
following operating systems:
v AIX
v HP-UX
v Linux
v Solaris
v Windows operating systems

DB2 supports 32-bit and 64-bit versions of each of these operating systems.
There are differences for building applications in 32-bit and 64-bit
environments in most cases on these operating systems. However, DB2
supports running 32-bit applications and routines (stored procedures and
user-defined functions) on all supported 64-bit operating system environments
except Linux IA64.

The compiler information given for each of these operating systems assumes
that you are using the DB2 precompiler for that operating system, and not the
precompiler support that may be built into one of the listed compilers.

8 Building and Running Applications



For the latest DB2 compiler information and related software updates, visit
the DB2 application development Web site at:

http://www.ibm.com/software/data/db2/udb/ad

Note the following points about software support:
v Fortran and REXX. DB2 will not enhance features for Fortran and REXX

beyond the level of support for these languages in DB2 Universal Database
Version 5.2.

v Perl. At the time of printing, Release 0.76 of the DB2 UDB driver
(DBD::DB2) for the Perl Database Interface (Perl DBI) Version 0.93 or later is
available for AIX, HP-UX, Linux, Solaris and Windows. The latest driver
can be downloaded from:

http://www.ibm.com/software/data/db2/perl

v PHP. PHP can be used as a method to access DB2 from web-based
applications. PHP is a server-side, HTML-embedded, cross-platform
scripting language. It supports DB2 access using the Unified-ODBC access
method, in which the user-level PHP communicates to DB2 using ODBC
calls. Unlike standard ODBC, with the Unified-ODBC method,
communication is directly to the DB2 CLI layer, not through the ODBC
layer. For more information about using PHP with DB2, search the DB2
support site:

www.ibm.com/software/data/db2/udb/winos2unix/support

Related reference:

v “AIX Supported Software for Building and Running Applications” on page
9

v “HP-UX Supported Software for Building and Running Applications” on
page 11

v “Linux Supported Software for Building and Running Applications” on
page 12

v “Solaris Supported Software for Building and Running Applications” on
page 14

v “Windows Supported Software for Building and Running Applications” on
page 15

Supported Software by Platform

AIX Supported Software for Building and Running Applications

DB2 for AIX supports the following operating systems:

AIX/6000
Version 4.3.3 with maintenance level 9, and later

Chapter 1. DB2 Support 9

http://www.ibm.com/software/data/db2/udb/ad
http://www.ibm.com/software/data/db2/perl/


Version 5.1.0 with maintenance level 1, and later

DB2 for AIX supports the following programming languages and compilers:

C IBM C for AIX Version 5.0

C++ IBM VisualAge C++ Version 5.0

COBOL
IBM COBOL Set for AIX Version 1.1

Micro Focus COBOL Server Express Version 2.0.10

Fortran
IBM XL Fortran for AIX Versions 4.1 (32-bit only) and 5.1.0 (for 32-bit
and 64-bit)

Java Java Development Kit (JDK) Version 1.3.1 and Java Runtime
Environment (JRE) Version 1.3.1 for AIX from IBM (installed as
necessary by DB2)

Note: DB2 will install this JDK if any components are selected for
install that require Java to run. If none are selected, the JDK can
still be selected to be installed.

Perl Perl 5.004_04 or later, DBI 0.93 or later

REXX IBM AIX REXX/6000 AISPO Product Number: 5764-057

IBM Object REXX for AIX Version 1.1

REXXSAA 4.00

Note: REXX support is for 32-bit only

For DB2 for AIX software support updates visit the DB2 application
development Web site:

http://www.ibm.com/software/data/db2/udb/ad

Related reference:

v “DB2 Supported Software for Building and Running Applications” on page
8

v “Installation requirements for partitioned DB2 servers (AIX)” in the Quick
Beginnings for DB2 Servers

v “AIX C Application Compile and Link Options” on page 153
v “AIX C Routine Compile and Link Options” on page 158
v “AIX C++ Application Compile and Link Options” on page 164
v “AIX C++ Routine Compile and Link Options” on page 170
v “AIX IBM COBOL Application Compile and Link Options” on page 182

10 Building and Running Applications

http://www.ibm.com/software/data/db2/udb/ad


v “AIX IBM COBOL Routine Compile and Link Options” on page 185
v “AIX Micro Focus COBOL Application Compile and Link Options” on page

189
v “AIX Micro Focus COBOL Routine Compile and Link Options” on page 192
v “Installation requirements for DB2 servers (AIX)” in the Quick Beginnings for

DB2 Servers

HP-UX Supported Software for Building and Running Applications

DB2 for HP-UX supports the following operating systems:

HP-UX
Versions 11 and 11i

DB2 for HP-UX supports the following programming languages and
compilers:

C HP C Compiler version B.11.11.02

C++ HP aC++ Version A.03.31

COBOL
Micro Focus COBOL Version 4.1

Fortran
HP Fortran/9000 Version 10.0

HP-UX F77 B.11.00.01

Java Software Developer’s Kit and Runtime Environment 1.3.1 for HP-UX
11.0 and 11i PA-RISC from Hewlett-Packard (installed as necessary by
DB2)

Note: DB2 will install this SDK if any components are selected for
install that require Java to run. If none are selected, the SDK
can still be selected to be installed.

Perl Perl 5.004_04 or later, DBI 0.93 or later

For DB2 for HP-UX software support updates visit the DB2 application
development Web site:

http://www.ibm.com/software/data/db2/udb/ad

Related reference:

v “DB2 Supported Software for Building and Running Applications” on page
8

v “Installation requirements for partitioned DB2 servers (HP-UX)” in the
Quick Beginnings for DB2 Servers

v “HP-UX C Application Compile and Link Options” on page 200

Chapter 1. DB2 Support 11

http://www.ibm.com/software/data/db2/udb/ad


v “HP-UX C Routine Compile and Link Options” on page 206
v “HP-UX C++ Application Compile and Link Options” on page 211
v “HP-UX C++ Routine Compile and Link Options” on page 218
v “HP-UX Micro Focus COBOL Application Compile and Link Options” on

page 225
v “HP-UX Micro Focus COBOL Routine Compile and Link Options” on page

228
v “Installation requirements for DB2 servers (HP-UX)” in the Quick Beginnings

for DB2 Servers

Linux Supported Software for Building and Running Applications

DB2 for Linux for Intel x86 (32-bit architecture) supports the following
operating system environment:

Linux kernel Version 2.4.9 or later, glibc Version 2.2.4 or later, and rpm
(required to install)

DB2 for Linux on S/390 supports the following operating system
environment:

One of the following:
v RedHat v7.2
v SuSE SLES-7 for Linux on S/390

DB2 for Linux for Intel x86 and S/390 supports the following programming
languages and compilers:

C/C++ For Linux on Intel: GNU/Linux gcc and g++ versions 2.95.3 and 2.96

For Linux/390: GNU/Linux gcc and g++ version 2.95.3

Please visit the DB2 application development Web site for information
on gcc and g++ version 3.0 support for Linux on Intel and for future
version support for Linux/390:

http://www.ibm.com/software/data/db2/udb/ad

Java For Linux on Intel: IBM Developer Kit and Runtime Environment for
Linux, Java 2 Technology Edition, Version 1.3.1, 32-bit version
(installed as necessary by DB2)

For Linux/390: IBM zSeries Developer Kit for Linux, Java 2
Technology Edition (at the Sun 1.3.1 SDK level, and installed as
necessary by DB2)

12 Building and Running Applications

http://www.ibm.com/software/data/db2/udb/ad


Note: DB2 will install the appropriate Developer Kit if any
components are selected for install that require Java to run. If
none are selected, the Developer Kit can still be selected to be
installed.

Perl Perl 5.004_04 or later, DBI 0.93 or later

REXX For Linux on Intel: Object REXX Interpreter for Linux Version 2.1

For Linux/390: Object REXX 2.2.0 for Linux/390

DB2 for Linux on IA64 supports the following operating system environment:

One of the following:
v Red Hat 7.2
v SuSE SLES-7 for Linux on IA64

DB2 for Linux on IA64 supports the following programming languages and
compilers:

C GNU/Linux gcc version 3.0.2

C++ GNU/Linux g++ version 3.0.2

Java IBM Developer Kit and Runtime Environment for Linux, Java 2
Technology Edition, Version 1.3.1, 64-bit version (installed as necessary
by DB2). To use this JDK, you must also have installed gcc 3.0.2 and
the gcc3 libstdc++ runtime libraries.

Note: DB2 will install this Developer Kit if any components are
selected for install that require Java to run. If none are selected,
the Developer Kit can still be selected to be installed.

Perl Perl 5.6

Note: Running DB2 32-bit applications or routines (stored procedures and
user-defined functions) is not supported on Linux IA64.

For DB2 for Linux software support updates visit the DB2 application
development Web site:

http://www.ibm.com/software/data/db2/udb/ad

Related reference:

v “DB2 Supported Software for Building and Running Applications” on page
8

v “Installation requirements for partitioned DB2 servers (Linux)” in the Quick
Beginnings for DB2 Servers

v “Linux C Application Compile and Link Options” on page 234

Chapter 1. DB2 Support 13

http://www.ibm.com/software/data/db2/udb/ad


v “Linux C Routine Compile and Link Options” on page 240
v “Linux C++ Application Compile and Link Options” on page 245
v “Linux C++ Routine Compile and Link Options” on page 250
v “Installation requirements for DB2 Personal Edition (Linux)” in the Quick

Beginnings for DB2 Personal Edition

v “Installation requirements for DB2 servers (Linux)” in the Quick Beginnings
for DB2 Servers

Solaris Supported Software for Building and Running Applications

DB2 for Solaris supports the following operating system:

Solaris
Solaris 7, Solaris 8, and Solaris 9

DB2 for Solaris supports the following programming languages and
compilers:

C Forte C Versions 5.0, 6, and 6.1

Note: These compiler versions used to be called ″SPARCompiler″.

C++ Forte C++ Versions 5.0, 6, and 6.1

Note: These compiler versions used to be called ″SPARCompiler″.

COBOL
Micro Focus COBOL Server Express Version 2.0.10

Fortran
SPARCompiler Fortran Versions 4.2 and 5.0

Java Java Development Kit (JDK) Version 1.3.1 for Solaris from Sun
Microsystems (shipped with DB2)

Perl Perl 5.004_04 or later, DBI 0.93 or later

For DB2 for Solaris software support updates visit the DB2 application
development Web site:

http://www.ibm.com/software/data/db2/udb/ad

Related reference:

v “DB2 Supported Software for Building and Running Applications” on page
8

v “Installation requirements for partitioned DB2 servers (Solaris)” in the Quick
Beginnings for DB2 Servers

v “Solaris C Application Compile and Link Options” on page 258
v “Solaris C Routine Compile and Link Options” on page 264

14 Building and Running Applications

http://www.ibm.com/software/data/db2/udb/ad


v “Solaris C++ Application Compile and Link Options” on page 270
v “Solaris C++ Routine Compile and Link Options” on page 277
v “Solaris Micro Focus COBOL Application Compile and Link Options” on

page 283
v “Solaris Micro Focus COBOL Routine Compile and Link Options” on page

287
v “Installation requirements for DB2 servers (Solaris)” in the Quick Beginnings

for DB2 Servers

Windows Supported Software for Building and Running Applications

DB2 for Windows 32-bit operating systems supports the following:

Microsoft Windows XP

Microsoft Windows .NET

Microsoft Windows 2000

Microsoft Windows NT
Version 4.0 with Service Pack 6a or later.

Microsoft Windows ME

Microsoft Windows 98

DB2 for Windows 32-bit operating systems supports the following
programming languages:

Basic Microsoft Visual Basic Version 4.2 and Version 5.0

Microsoft Visual Basic 6.0 Professional Edition

C/C++ Microsoft Visual C++ Version 5.0 and 6.0

Intel C++ Compiler for 32-bit applications Version 5 or later

COBOL
Micro Focus COBOL Version 4.0.20

Micro Focus COBOL Net Express Version 3.1.0

IBM VisualAge COBOL Version 2.0

REXX IBM Object REXX for Windows NT/95 Version 1.1

For information on obtaining IBM Object REXX for Windows, visit:
http://www.ibm.com/software/ad/obj-rexx/

Java IBM Developer Kit and Runtime Environment for Windows, Java 2
Technology Edition, Version 1.3.1, 32-bit version (installed as necessary
by DB2)

Chapter 1. DB2 Support 15

http://www.ibm.com/software/ad/obj-rexx


Note: DB2 will install this Developer Kit if any components are
selected for install that require Java to run. If none are selected,
the Developer Kit can still be selected to be installed.

Java Development Kit (JDK) 1.3.1 for Win32 from Sun Microsystems

Perl Perl 5.004_04, DBI 0.93

Microsoft Windows Scripting Host
Version 5.1

DB2 for Windows 64-bit operating systems supports the following:

Microsoft Windows XP 64-bit Edition

Microsoft Windows .NET Server 64-bit Edition

DB2 for Windows 64-bit operating systems supports the following
programming languages:

C/C++ Intel C++ Compiler for Itanium Version 6.0

Microsoft’s C/C++ compiler for the Intel Itanium architecture

Java IBM Developer Kit and Runtime Environment for Windows, Java 2
Technology Edition, Version 1.3.1, 64-bit version (installed as necessary
by DB2)

Note: DB2 will install this Developer Kit if any components are
selected for install that require Java to run. If none are selected,
the Developer Kit can still be selected to be installed.

Microsoft Windows Scripting Host
Version 5.1

Note: Windows .NET Server includes all of the following:
v Windows .NET Web Server
v Windows .NET Standard Server
v Windows .NET Enterprise Server
v Windows .NET Datacenter Server

For DB2 for Windows software support updates visit the DB2 application
development Web site:

http://www.ibm.com/software/data/db2/udb/ad

Related reference:

v “DB2 Supported Software for Building and Running Applications” on page
8

16 Building and Running Applications

http://www.ibm.com/software/data/db2/udb/ad


v “Installation requirements for DB2 servers (Windows)” in the Quick
Beginnings for DB2 Servers

v “Windows C/C++ Application Compile and Link Options” on page 303
v “Windows C/C++ Routine Compile and Link Options” on page 308
v “Windows IBM COBOL Application Compile and Link Options” on page

313
v “Windows IBM COBOL Routine Compile and Link Options” on page 316
v “Windows Micro Focus COBOL Application Compile and Link Options” on

page 320
v “Windows Micro Focus COBOL Routine Compile and Link Options” on

page 322
v “Installation requirements for DB2 Personal Edition (Windows)” in the

Quick Beginnings for DB2 Personal Edition

v “Installation requirements for a partitioned DB2 server (Windows)” in the
Quick Beginnings for DB2 Servers

Chapter 1. DB2 Support 17



18 Building and Running Applications



Chapter 2. Setup

General Setup Information . . . . . . . 19
Setting Up the Application Development
Environment . . . . . . . . . . . 19
Updating the Database Manager
Configuration File . . . . . . . . . 21
Setting Up the Java Environment . . . . 22
Setting Up the SQL Procedures
Environment . . . . . . . . . . . 23

UNIX . . . . . . . . . . . . . . 24
Setting Up the UNIX Application
Development Environment . . . . . . 25
UNIX Environment Variable Settings . . . 26
Java . . . . . . . . . . . . . . 26

Setting Up the UNIX Java Environment 26
Setting Up the AIX Java Environment 28
Setting Up the HP-UX Java
Environment . . . . . . . . . . 28
Setting Up the Linux Java Environment 29
Setting Up the Solaris Java Environment 30

SQL Procedures . . . . . . . . . . 31
Setting Up the UNIX SQL Procedures
Environment . . . . . . . . . . 31

UNIX Default DB2 SQLROUTINE
COMPILE COMMAND Values. . . . 32

Windows . . . . . . . . . . . . . 34
Setting Up the Windows Application
Development Environment . . . . . . 35
Java . . . . . . . . . . . . . . 38

Setting Up the Windows Java
Environment . . . . . . . . . . 38
Windows Java Environment Settings . . 39

SQL Procedures . . . . . . . . . . 40
Setting Up the Windows SQL
Procedures Environment . . . . . . 40

Sample Database . . . . . . . . . . 42
Setting Up the sample Database . . . . 42
Creating the sample Database . . . . . 42
Creating the sample Database on Host or
AS/400 and iSeries Servers . . . . . . 44
Cataloging the sample Database . . . . 45
Binding the sample Database Utilities . . 46

Migrating Applications . . . . . . . . 52
Where to Go Next . . . . . . . . . . 55

General Setup Information

For DB2 CLI setup information, see the CLI Guide and Reference.

Setting Up the Application Development Environment
In order to build and run DB2 applications, you must use a compiler or
interpreter for one of the supported programming languages for your
operating system. You have to set up the DB2 environment and configure it
for your development requirements. There are certain procedures to follow in
order to migrate DB2 applications from a previous version of DB2. Also, you
may want to create the DB2 sample database for testing purposes.

Prerequisites:

Ensure the environment for the DB2-supported compiler or interpreter you
plan to use is correctly set up by first building a non-DB2 application. Then, if
you encounter any problems, please see the documentation that comes with
your compiler or interpreter.

Install the Application Development client on the client or server workstation
you are using. If you are developing applications from a remote client, ensure

© Copyright IBM Corp. 1993 - 2002 19



your client machine can reach the machine on which the DB2 database server
resides. Also ensure your client can successfully connect to the database. You
can use the command line processor (CLP) or client configuration assistant
(CCA) to test connectivity.

Procedure:

To set up your application development environment:
1. Unless the defaults are acceptable, Update the Database Manager

Configuration File
2. If you will be programming with DB2 CLI, Java, or SQL procedures, you

have to configure your environment before you perform any
platform-specific changes with the instructions in the following:
v Setting Up the CLI Environment
v Setting Up the Java environment
v Setting Up the SQL Procedures environment

3. Configure your operating system environment with the instructions in the
following:
v Setting Up the UNIX Environment
v Setting Up the Windows Environment

4. Optional: Setting Up the sample Database

Related concepts:

v “Database Manager Instances” on page 5
v “Migrating Applications” on page 48

Related tasks:

v “Updating the Database Manager Configuration File” on page 21
v “Setting Up the CLI Environment” in the CLI Guide and Reference, Volume 1

v “Setting Up the Java Environment” on page 22
v “Setting Up the SQL Procedures Environment” on page 23
v “Setting Up the UNIX Application Development Environment” on page 25
v “Setting Up the Windows Application Development Environment” on page

35
v “Setting Up the sample Database” on page 42

Related reference:

v “DB2 Application Development Client” on page 3
v “DB2 Supported Servers” on page 7
v “DB2 Supported Software for Building and Running Applications” on page

8

20 Building and Running Applications



v “AIX Supported Software for Building and Running Applications” on page
9

v “HP-UX Supported Software for Building and Running Applications” on
page 11

v “Linux Supported Software for Building and Running Applications” on
page 12

v “Solaris Supported Software for Building and Running Applications” on
page 14

v “Windows Supported Software for Building and Running Applications” on
page 15

Updating the Database Manager Configuration File

This file contains important settings for application development.

For routines (stored procedures and UDFs), the keyword KEEPFENCED has the
default value YES. This keeps the routine process alive. If you are developing a
routine, you may want to test loading the same shared library a number of
times. This default setting may interfere with reloading the library. It is best to
change the value of this keyword to NO while developing routines, and then
change it back to YES when you are ready to load the final version of your
shared library.

For threadsafe routines, the process used to run the routine remains on the
instance after completion (only the thread within the process that is used to
invoke the routine terminates). For this reason, when developing a new
routine you should define the routine as not threadsafe. Then, if appropriate,
enable the routine to run in a threadsafe mode when it is put into production.

Note: KEEPFENCED was known as KEEPDARI in previous versions of DB2.

For Java application development, you need to update the JDK_PATH keyword
with the path where the Java Development Kit (JDK) is installed.

Note: JDK_PATH was known as JDK11_PATH in previous versions of DB2.

Procedure:

To change these settings enter:
db2 update dbm cfg using <keyword> <value>

For example, to set the keyword KEEPFENCED to NO:
db2 update dbm cfg using KEEPFENCED NO

To set the JDK_PATH keyword to the directory /home/db2inst/jdk13:

Chapter 2. Setup 21



db2 update dbm cfg using JDK_PATH /home/db2inst/jdk13

To view the current settings in the database manager configuration file, enter:
db2 get dbm cfg

Note: On Windows, you need to enter these commands in a DB2 command
window.

Related tasks:

v “Setting Up the Java Environment” on page 22

Related reference:

v “CREATE FUNCTION statement” in the SQL Reference, Volume 2

v “CREATE PROCEDURE statement” in the SQL Reference, Volume 2

v “GET DATABASE MANAGER CONFIGURATION” in the Command
Reference

v “RESET DATABASE MANAGER CONFIGURATION” in the Command
Reference

Setting Up the Java Environment

You can develop Java programs to access DB2 databases with the appropriate
Java Development Kit (JDK) for your platform. The JDK includes Java
Database Connectivity (JDBC), a dynamic SQL API for Java.

DB2 JDBC support is provided as part of the Java Enablement option on DB2
clients and servers. With this support, you can build and run JDBC
applications and applets. These contain dynamic SQL only, and use a Java call
interface to pass SQL statements to DB2.

DB2 Java embedded SQL (SQLJ) support is provided as part of the DB2 AD
Client. With DB2 SQLJ support, in addition to DB2 JDBC support, you can
build and run SQLJ applets and applications. These contain static SQL and
use embedded SQL statements that are bound to a DB2 database.

The SQLJ support provided by the DB2 AD Client includes:
v The DB2 SQLJ translator, sqlj, which replaces embedded SQL statements in

the SQLJ program with Java source statements, and generates a serialized
profile which contains information about the SQL operations found in the
SQLJ program.

v The DB2 SQLJ profile customizer, db2profc, which precompiles the SQL
statements stored in the serialized profile, customizes them into runtime
function calls, and generates a package in the DB2 database.

22 Building and Running Applications



v The DB2 SQLJ profile printer, db2profp, which prints the contents of a DB2
customized version of a profile in plain text.

Procedure:

To run DB2 Java applications, you must install and invoke a Java Virtual
Machine (JVM) that provides native threads support. To execute a Java
application using native threads, you can use the -native option in your
command. For example, to run the Java sample application, DbInfo.class,
you can use the following command:

java -native DbInfo

You can specify native threads as the default thread support for some Java
Virtual Machines by setting the THREADS_FLAG environment variable to
″native″. This documentation assumes native threads support is the default.
Please refer to your JVM documentation for instructions on making native
threads the default on your system.

To run DB2 Java applets, you may invoke a Java Virtual Machine that
provides either native threads or green threads support.

When the above are installed and working, you can set up your particular
operating system Java environment by following the steps in one of the
following:
v Setting Up the UNIX Java Environment
v Setting Up the Windows Java Environment

For the latest DB2 Java application development updates, visit the Web page
at:

http://www.ibm.com/software/data/db2/java

Related tasks:

v “Setting Up the UNIX Java Environment” on page 26
v “Setting Up the Windows Java Environment” on page 38

Related reference:

v “db2profc - DB2 SQLj Profile Customizer” in the Command Reference

v “db2profp - DB2 SQLj Profile Printer” in the Command Reference

Setting Up the SQL Procedures Environment

Compiler configuration is done with two DB2 registry variables:

DB2_SQLROUTINE_COMPILER_PATH
Is assigned the pathname of a script that sets the compiler
environment variables.

Chapter 2. Setup 23

http://www.ibm.com/software/data/db2/java


DB2_SQLROUTINE_COMPILE_COMMAND
Is assigned the full command DB2 uses to compile the C files
generated for SQL procedures.

You can either use the db2set command or use the SQL Stored Procedures
Build Options dialog from the Development Center to set the value of these
DB2 registry variables. Using the SQL Stored Procedures Build Options dialog
eliminates the need to physically access the database server or to restart it in
order for the changes to take effect.

The steps below demonstrate the db2set command.

Prerequisites:

For SQL procedures support you have to install the Application Development
Client and a DB2 supported C or C++ compiler on the server.

Procedure:

To configure your SQL procedures environment, do the steps in one of the
following, depending on your platform:
v Setting Up the UNIX SQL Procedures Environment
v Setting Up the Windows SQL Procedures Environment

Related concepts:

v “DB2 registry and environment variables” in the Administration Guide:
Performance

Related tasks:

v “Setting Up the UNIX SQL Procedures Environment” on page 31
v “Setting Up the Windows SQL Procedures Environment” on page 40
v “Creating SQL Procedures” on page 133
v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140
v “Rebinding SQL Procedures” on page 141

UNIX

For UNIX DB2 CLI setup information, see the CLI Guide and Reference.

24 Building and Running Applications



Setting Up the UNIX Application Development Environment
You need to set environment variables for your database instance. Each
database manager instance has two files, db2profile and db2cshrc, which are
scripts to set the environment variables for that instance.

Procedure:

Run the correct script for the shell you are using:

For bash or Korn shell:
. $HOME/sqllib/db2profile

For C shell:
source $HOME/sqllib/db2cshrc

where $HOME is the home directory of the instance owner.

If you include this command in your .profile or .login file, the command
runs automatically when you log on.

If you will be using ODBC or DB2 CLI, Java, or SQL Procedures, do the steps
in the following topics:
v Setting Up the UNIX ODBC Environment
v Setting Up the UNIX Java Environment
v Setting Up the UNIX SQL Procedures Environment

Related concepts:

v “UNIX Environment Variable Settings” on page 26

Related tasks:

v “Setting Up the UNIX ODBC Environment” in the CLI Guide and Reference,
Volume 1

v “Setting Up the UNIX Java Environment” on page 26
v “Setting Up the UNIX SQL Procedures Environment” on page 31

Related reference:

v “AIX Supported Software for Building and Running Applications” on page
9

v “HP-UX Supported Software for Building and Running Applications” on
page 11

v “Linux Supported Software for Building and Running Applications” on
page 12

v “Solaris Supported Software for Building and Running Applications” on
page 14

Chapter 2. Setup 25



UNIX Environment Variable Settings
Depending on the UNIX® platform you are on, values for the following
environment variables are set, either in db2profile (for bash or korn shell) or
db2cshrc (for C shell), and a call to these files are put in the .profile (bash or
korn shell) or .login (C shell) file.

AIX:

v PATH, includes several DB2® directories including sqllib/bin

v LIBPATH, includes the directory sqllib/lib (see note below)

HP-UX:

v PATH, includes several DB2 directories including sqllib/bin

v SHLIB_PATH (32-bit and 64-bit) or LD_LIBRARY_PATH (64-bit),
includes the directory sqllib/lib (see note below)

Linux and Solaris:

v PATH, includes several DB2 directories including sqllib/bin

v LD_LIBRARY_PATH, includes the directory sqllib/lib (see note
below)

Note: If you are running a local 32-bit application in a 64-bit DB2 instance,
LIBPATH, SHLIB_PATH, and LD_LIBRARY_PATH should contain
sqllib/lib32 instead of sqllib/lib.

The blank files sqllib/userprofile and sqllib/usercshrc are created during
instance creation to allow users to place their own instance environmental
settings. These files will not be modified during an instance update (db2iupdt)
in any DB2 FixPak or future version install. If you do not want the new
environment settings in the db2profile or db2cshrc scripts, you can override
them using the corresponding ″user″ script, which is called at the end of the
db2profile or db2cshrc script. During an instance migration (db2imigr), the
user scripts are copied over so that your environment modifications will still
be in use. These user scripts are only available starting with DB2 Version 7.

Related tasks:

v “Setting Up the UNIX Application Development Environment” on page 25

Java

Setting Up the UNIX Java Environment

To run JDBC and SQLJ programs on UNIX with DB2 JDBC support,
commands to update your Java environment are included in the database
manager files db2profile and db2cshrc. When a DB2 instance is created,
.bashrc, .profile, and/or .cshrc are modified so that:
1. THREADS_FLAG is set to ″native″. (on HP-UX, Linux and Solaris only)

26 Building and Running Applications



2. CLASSPATH includes:
v ″.″ (the current directory)
v the file sqllib/java/db2java.zip

v the file sqllib/java/db2jcc.jar

To build SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:
sqllib/java/runtime.zip

Procedure:

To run DB2 Java routines (stored procedures and UDFs), you need to update
the DB2 database manager configuration on the server to include the path
where the JDK is installed on that machine. You can do this by entering the
following on the server command line:

db2 update dbm cfg using JDK_PATH /home/db2inst/jdk13

where /home/db2inst/jdk13 is the path where the JDK is installed.

You can check the DB2 database manager configuration to verify the correct
value for the JDK_PATH field by entering the following command on the server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The JDK_PATH
field appears near the beginning of the output.

When the above are installed and working, you can set up your specific UNIX
operating system environment by following the steps in one of the following:
v Setting up the AIX Java Environment
v Setting up the HP-UX Java Environment
v Setting up the Linux Java Environment
v Setting up the Solaris Java Environment

Related tasks:

v “Setting Up the AIX Java Environment” on page 28
v “Setting Up the HP-UX Java Environment” on page 28
v “Setting Up the Linux Java Environment” on page 29
v “Setting Up the Solaris Java Environment” on page 30
v “Updating the Database Manager Configuration File” on page 21

Chapter 2. Setup 27



Related reference:

v “GET DATABASE MANAGER CONFIGURATION” in the Command
Reference

v “RESET DATABASE MANAGER CONFIGURATION” in the Command
Reference

Setting Up the AIX Java Environment

Procedure:

To build Java applications on AIX with DB2 JDBC support, you need:
1. Java Development Kit (JDK) Version 1.3.1 and Java Runtime Environment

(JRE) Version 1.3.1 for AIX from IBM.
2. DB2 Java Enablement, provided on DB2 Universal Database Version 8 for

AIX clients and servers.

Related concepts:

v “Java Sample Programs” on page 107
v “Java Applet Considerations” on page 109

Related tasks:

v “Setting Up the sample Database” on page 42

Related reference:

v “AIX Supported Software for Building and Running Applications” on page
9

Setting Up the HP-UX Java Environment

Procedure:

To build Java applications on HP-UX with DB2 JDBC support, you need to
install and configure on your development machine:
1. Software Developer’s Kit and Runtime Environment 1.3.1 for HP-UX 11.0

and 11i PA-RISC from Hewlett-Packard.
2. DB2 Java Enablement, provided on DB2 Universal Database Version 8 for

HP-UX clients and servers.

To run Java routines (stored procedures and user-defined functions), make
sure the shared library path is similar to the following:

export SHLIB_PATH=$JAVADIR/jre/lib/PA_RISC:\
$JAVADIR/jre/lib/PA_RISC/classic:\
$HOME/sqllib/lib:\
/usr/lib:$SHLIB_PATH

28 Building and Running Applications



where $JAVADIR is normally set to /opt/java1.3 (the default location of the
Java SDK).

Note: DB2 does nor support the HotSpot Java Virtual Machine for routines.

Related concepts:

v “Java Sample Programs” on page 107
v “Java Applet Considerations” on page 109

Related tasks:

v “Setting Up the sample Database” on page 42

Related reference:

v “HP-UX Supported Software for Building and Running Applications” on
page 11

Setting Up the Linux Java Environment

Procedure:

To build Java applications on Linux with DB2 JDBC support, you need to
install and configure on your development machine:
1. One of the following:

v For Linux on Intel: IBM Developer Kit and Runtime Environment for
Linux, Java 2 Technology Edition, Version 1.3.1, 32-bit version

v For Linux/390: IBM zSeries Developer Kit for Linux, Java 2 Technology
Edition

v For Linux on IA64: IBM Developer Kit and Runtime Environment for
Linux, Java 2 Technology Edition, Version 1.3.1, 64-bit version

2. DB2 Java Enablement, provided on DB2 Universal Database Version 8 for
Linux clients and servers.

To run Java stored procedures or user-defined functions, the Linux run-time
linker must be able to access certain Java shared libraries, and DB2 must be
able to load these libraries and the Java virtual machine. Since the program
that does this loading runs with setuid privileges, it will only look for the
dependent libraries in /lib or /usr/lib.

You can add the location of the Java shared libraries to /etc/ld.so.conf, but
we recommend creating symbolic links in /usr/lib to point to these libraries.
For the IBM JDK 1.3, you need symbolic links to libjava.so, libjvm.so, and
libhpi.so. You can create the symbolic links by running the following
commands as root:

Chapter 2. Setup 29



cd /usr/lib
ln -fs JAVAHOME/jre/bin/libjava.so .
ln -fs JAVAHOME/jre/bin/classic/libjvm.so .
ln -fs JAVAHOME/jre/bin/libhpi.so .

where JAVAHOME is the base directory for the JDK. If DB2 cannot find these
libraries, you will get a -4301 error when trying to run a Java routine, and
there will be messages in the administration notification log about libraries
not found.

If you decide to add the location of the Java shared libraries to
/etc/ld.so.conf, you must refresh the run-time linker cache by running the
following command as root:

bash# ldconfig

Related concepts:

v “Java Sample Programs” on page 107
v “Java Applet Considerations” on page 109

Related tasks:

v “Setting Up the sample Database” on page 42

Related reference:

v “Linux Supported Software for Building and Running Applications” on
page 12

Setting Up the Solaris Java Environment

Procedure:

To build Java applications in the Solaris operating environment with DB2
JDBC support, you need to install and configure the following on your
development machine:
1. Java Development Kit (JDK) Version 1.3.1 for Solaris from Sun

Microsystems.
2. DB2 Java Enablement, provided on DB2 Universal Database Version 8 for

Solaris clients and servers.

Related concepts:

v “Java Sample Programs” on page 107
v “Java Applet Considerations” on page 109

Related tasks:

v “Setting Up the sample Database” on page 42

30 Building and Running Applications



Related reference:

v “Solaris Supported Software for Building and Running Applications” on
page 14

SQL Procedures

Setting Up the UNIX SQL Procedures Environment

SQL procedures require the setting up of two environment variables on the
server with your compiler configuration:
DB2_SQLROUTINE_COMPILER_PATH and
DB2_SQLROUTINE_COMPILE_COMMAND.

Restrictions:

The instance owner must belong to the primary group of the fenced id.

Procedure:

The first time you compile a stored procedure, DB2 will generate the
executable script file $HOME/sqllib/function/routine/sr_cpath (which
contains the default values for the compiler environment variables). If the
default values are not appropriate for your compiler, do one of the following:
v edit the sr_cpath script file.
v set the DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable to

contain the full path name of another executable script that specifies the
desired settings.

The installation of the Application Development Client provides a default
compilation command that works for at least one of the compilers supported
on each server platform:

AIX IBM C for AIX Version 5.0

HP-UX
HP aC++ Version A.03.31

Linux GNU/Linux g++

Solaris
Forte C++ Versions 5.0, 6, and 6.1

To use other compilers, or to customize the default command, you must set
the DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry variable as follows:

db2set DB2_SQLROUTINE_COMPILE_COMMAND=<compile_command>

Chapter 2. Setup 31



where <compile_command> is the C or C++ compilation command, including
the options and parameters required to create routines. A db2start command
must be executed for the setting to take effect.

In the compile command, use the keyword SQLROUTINE_FILENAME to replace
the filename for the generated SQC, C, PDB, DEF, EXP, messages log and
shared library files. For AIX only, use the keyword SQLROUTINE_ENTRY to
replace the entry point name. An example using both these keywords can be
seen in the command to set the default values of
DB2_SQLROUTINE_COMPILE_COMMAND for IBM C for AIX Version 5.0:

db2set DB2_SQLROUTINE_COMPILE_COMMAND=xlc -I$HOME/sqllib/include \
SQLROUTINE_FILENAME.c -bE:SQLROUTINE_FILENAME.exp -e SQLROUTINE_ENTRY \
-o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -ldb2

Related tasks:

v “Retaining Intermediate Files for SQL Procedures” on page 137
v “Customizing Precompile and Bind Options for SQL Procedures” on page

138
v “Backing Up and Restoring SQL Procedures” on page 139
v “Creating SQL Procedures” on page 133
v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Distributing Compiled SQL Procedures” on page 140

Related reference:

v “UNIX Default DB2 SQLROUTINE COMPILE COMMAND Values” on
page 32

v “AIX Supported Software for Building and Running Applications” on page
9

v “HP-UX Supported Software for Building and Running Applications” on
page 11

v “Linux Supported Software for Building and Running Applications” on
page 12

v “Solaris Supported Software for Building and Running Applications” on
page 14

UNIX Default DB2 SQLROUTINE COMPILE COMMAND Values
The following are the commands to set the default values for the
DB2_SQLROUTINE_COMPILE_COMMAND for C or C++ compilers on
supported UNIX server platforms:

AIX To use IBM C for AIX Version 5.0:

32 Building and Running Applications



db2set DB2_SQLROUTINE_COMPILE_COMMAND=xlc -I$HOME/sqllib/include \
SQLROUTINE_FILENAME.c -bE:SQLROUTINE_FILENAME.exp \
-e SQLROUTINE_ENTRY -o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -ldb2

To use IBM VisualAge C++ 5.0:
db2set DB2_SQLROUTINE_COMPILE_COMMAND=xlC -I$HOME/sqllib/include \
SQLROUTINE_FILENAME.C -bE:SQLROUTINE_FILENAME.exp \
-e SQLROUTINE_ENTRY -o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -ldb2

This is the default compile command if the
DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry variable is
not set.

Note: To compile 64-bit SQL procedures on AIX, add the -q64 option
to the above commands.

To use IBM VisualAge C++ for AIX Version 5 incremental compiler:
db2set DB2_SQLROUTINE_COMPILE_COMMAND="vacbld"

If you do not specify the configuration file after the vacbld command,
DB2 will create the following default configuration file at the first
attempt to create an SQL procedure:

$HOME/sqllib/function/routine/sqlproc.icc

You can specify your own configuration file when setting the DB2
registry value for DB2_SQLROUTINE_COMPILE_COMMAND:

db2set DB2_SQLROUTINE_COMPILE_COMMAND="vacbld \
$HOME/sqllib/function/sqlproc.icc"

HP-UX
To use HP C Compiler Version B.11.11.02:

db2set DB2_SQLROUTINE_COMPILE_COMMAND=cc +DAportable +ul -Aa +z \
-I$HOME/sqllib/include -c SQLROUTINE_FILENAME.c; \
ld -b -o SQLROUTINE_FILENAME SQLROUTINE_FILENAME.o \
-L$HOME/sqllib/lib -ldb2

To use HP aC++ Version A.03.31:
db2set DB2_SQLROUTINE_COMPILE_COMMAND=aCC +DAportable +u1 +z -ext \
-I$HOME/sqllib/include SQLROUTINE_FILENAME.C -b \
-o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -ldb2

This is the default compile command if the
DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry variable is
not set.

Note: To compile 64-bit SQL procedures on HP-UX, take out the
+DAportable option and add the +DA2.0W option to the above
commands.

Chapter 2. Setup 33



Linux To use GNU/Linux gcc:
db2set DB2_SQLROUTINE_COMPILE_COMMAND=cc -fpic \
-I$HOME/sqllib/include SQLROUTINE_FILENAME.c \
-shared -o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -ldb2

To use GNU/Linux g++:
db2set DB2_SQLROUTINE_COMPILE_COMMAND=g++ -fpic \
-I$HOME/sqllib/include SQLROUTINE_FILENAME.C \
-shared -o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -ldb2

This is the default compile command if the
DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry variable is
not set.

Solaris
To use Forte C Version 5.0:

db2set DB2_SQLROUTINE_COMPILE_COMMAND=cc -xarch=v8plusa -Kpic \
-I$HOME/sqllib/include SQLROUTINE_FILENAME.c \
-G -o SQLROUTINE_FILENAME -L$HOME/sqllib/lib \
-R$HOME/sqllib/lib -ldb2

To use Forte C++ Version 5.0:
db2set DB2_SQLROUTINE_COMPILE_COMMAND=CC -xarch=v8plusa -Kpic \
-I$HOME/sqllib/include SQLROUTINE_FILENAME.C \
-G -o SQLROUTINE_FILENAME -L$HOME/sqllib/lib \
-R$HOME/sqllib/lib -ldb2

This is the default compile command if the
DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry variable is
not set.

Notes:

1. The compiler option -xarch=v8plusa has been added to the default
compiler command to avoid a problem where the compiler does
not produce valid executables when linking with libdb2.so.

2. To compile 64-bit SQL procedures on Solaris, take out the
-xarch=v8plusa option and add the -xarch=v9 option to the above
commands.

Related tasks:

v “Setting Up the UNIX SQL Procedures Environment” on page 31

Windows

For Windows DB2 CLI setup information, see the CLI Guide and Reference.

34 Building and Running Applications



Setting Up the Windows Application Development Environment
When you install the DB2 AD Client on Windows XP, Windows .Net Server,
Windows NT or Windows 2000, the install program updates the configuration
registry with the environment variables INCLUDE, LIB, PATH, DB2PATH,
and DB2INSTANCE. The default instance is DB2. When you install the DB2
AD Client on Windows 98 or Windows ME, the install program updates the
autoexec.bat file.

You can override these environment variables to set the values for the
machine or the currently logged-on user. Exercise caution when changing
these environment variables. Do not change the DB2PATH environment
variable. DB2INSTANCE should only be defined at the user environment
level. It is not required if you make use of the DB2INSTDEF registry variable
which defines the default instance name to use if DB2INSTANCE is not set.

Procedure:

To override the environment variable settings, use any of the following:
v The Windows XP control panel
v The Windows .NET Server control panel
v The Windows NT control panel
v The Windows 2000 control panel
v The Windows 98 or Windows ME command window
v The Windows 98 or Windows ME autoexec.bat file

When using the variable %DB2PATH% in a command, put the full path in
quotes, as in set LIB=″%DB2PATH%\lib″;%LIB%. The default installation
value for this variable is \Program Files\IBM\SQLLIB, which contains a space,
so not using quotes may cause an error.

In addition, you must take the following specific steps for running DB2
applications:
v When building C or C++ programs, you must ensure that the INCLUDE

environment variable contains %DB2PATH%\INCLUDE as the first directory.
For example, the Microsoft Visual C++ compiler environment setup file,
Vc\bin\vcvars32.bat, has the following command:

set INCLUDE=%MSVCDir%\INCLUDE;%MSVCDir%\...\ATL\INCLUDE;%INCLUDE%

To use this file with DB2, first move %INCLUDE%, which sets the
%DB2PATH%\INCLUDE path, from the end of the list to the beginning, as
follows:

set INCLUDE=%INCLUDE%;%MSVCDir%\INCLUDE;%MSVCDir%\...\ATL\INCLUDE;

Chapter 2. Setup 35



v When building Micro Focus COBOL programs, set the COBCPY environment
variable to point to %DB2PATH%\INCLUDE\cobol_mf.

v When building IBM COBOL programs, set the SYSLIB environment variable
to point to %DB2PATH%\INCLUDE\cobol_a.

v Ensure the LIB environment variable points to %DB2PATH%\lib by using:
set LIB="%DB2PATH%\lib";%LIB%

Note: To enable cross-developing 64-bit applications from a 32-bit
environment, you must ensure that the LIB environment variable
points to %DB2PATH%\lib\Win64. This means you have to change it
from the default setting. By default, the environment variable points
to %DB2PATH%\lib, which is for developing 32-bit applications on
32-bit environments, or 64-bit applications on 64-bit environments.

v Ensure that the DB2COMM environment variable is set at the server of a
remote database.

v Ensure that the security service has started at the server for SERVER
authentication, and at the client, depending on the level of CLIENT
authentication. To start the security service manually, use the NET START
DB2NTSECSERVER command.
Normally, the only time you would want to set the security service to start
automatically is if the workstation is acting as a DB2 client connecting to a
server that is configured for Client Authentication. To have the security
service start automatically, do the following:

Windows NT

1. Click the ″Start″ button.
2. Click ″Settings″.
3. Click ″Control Panel″.
4. In the Control Panel, click ″Services″.
5. In the Services window, highlight ″DB2 Security Server″.
6. If it does not have the settings ″Started″ and ″Automatic″ listed,

click ″Startup″.
7. Click ″Automatic″.
8. Click ″OK″.
9. Reboot your machine to have the settings take effect.

Windows 2000 and Windows .NET Server

1. Click the ″Start″ button.
2. Click ″Settings″.
3. Click ″Control Panel″.
4. Click ″Administrative Tools″.
5. Click ″Services″.

36 Building and Running Applications



6. In the Services window, highlight ″DB2 Security Server″.
7. If it does not have the settings ″Started″ and ″Automatic″

listed, click ″Action″ from the top menu.
8. Click ″Properties″.
9. Make sure you are in the ″General″ tab.

10. Choose ″Automatic″ from the ’Startup Type’ drop-down menu.
11. Click ″OK″.
12. Reboot your machine to have the settings take effect.

Windows XP

1. Click the ″Start″ button.
2. Click ″Settings″.
3. Click ″Control Panel″.
4. Click ″Performance and Maintenance″.
5. Click ″Administrative Tools″.
6. Click ″Services″.
7. In the Services window, highlight ″DB2 Security Server″.
8. If it does not have the settings ″Started″ and ″Automatic″

listed, click ″Action″ from the top menu.
9. Click ″Properties″.

10. Make sure you are in the ″General″ tab.
11. Choose ″Automatic″ from the ’Startup Type’ drop-down menu.
12. Click ″OK″.
13. Reboot your machine to have the settings take effect.

The database manager on a Windows XP, Windows .NET Server, Windows
NT, or a Windows 2000 environment is implemented as a service, and
hence does not return errors or warnings when the service is started,
though problems may have occurred. This means that when you run the
db2start or the NET START command, no warnings will be returned if any
communication subsystem failed to start. Therefore, the user should always
examine the event logs or the DB2 Administration Notification log for any
errors that may have occurred during the running of these commands.

If you will be using DB2 CLI, Java, or SQL procedures, proceed to the
appropriate task:
– Setting Up the Windows CLI Environment
– Setting Up the Windows Java Environment
– Setting Up the Windows SQL Procedures Environment

Related tasks:

Chapter 2. Setup 37



v “Setting Up the Windows CLI Environment” in the CLI Guide and Reference,
Volume 1

v “Setting Up the Windows Java Environment” on page 38
v “Setting Up the Windows SQL Procedures Environment” on page 40

Related reference:

v “Windows Supported Software for Building and Running Applications” on
page 15

Java

Setting Up the Windows Java Environment

This topic provides the information you need to build and run DB2 Java
programs in a Windows environment.

Procedure:

To build Java applications on a Windows operating system with DB2 JDBC
support, you need to install and configure the following on your development
machine:
1. One of the following:

v IBM Developer Kit and Runtime Environment for Windows, Java 2
Technology Edition, Version 1.3.1

v Java Development Kit (JDK) 1.3.1 for Win32 from Sun Microsystems
2. DB2 Java Enablement, provided on DB2 Universal Database Version 8 for

Windows clients and servers.

To run DB2 Java routines (stored procedures and UDFs), you need to update
the DB2 database manager configuration on the server to include the path
where the JDK is installed on that machine. You can do this by entering the
following on the server command line:

db2 update dbm cfg using JDK_PATH c:\jdk13

where c:\jdk13 is the path where the JDK is installed.

If the path where the JDK is installed contains a directory name with one or
more spaces, you can either put the path in single quotes. For example:

db2 update dbm cfg using JDK_PATH ’c:\Program Files\jdk13’

or use the short-form of the directory name which does not have the space:
db2 update dbm cfg using JDK_PATH c:\progra~1\jdk13

38 Building and Running Applications



You can check the DB2 database manager configuration to verify the correct
value for the JDK_PATH field by entering the following command on the server:

db2 get dbm cfg

You may want to redirect the output to a file for easier viewing. The JDK_PATH
field appears near the beginning of the output.

The following commands can be put into a batch file to set your Java
environment for the IBM Java Development Kits. The batch file must be run
in a DB2 command window. Make sure you make all necessary path changes
to suit your particular environment. Similar commands can be used for other
supported JDKs.

Here are the commands for an example batch file to set up the Sun JDK 1.3.1
environment:

set JDKPATH=D:\JAVA\SUNjdk131
set PATH=%JDKPATH%\bin;%PATH%
set CLASSPATH=%CLASSPATH%;%JDKPATH%\lib\jdbc2_0-stdext.jar
db2 update dbm cfg using JDK_PATH %JDKPATH%
db2 terminate
db2stop
db2start

The batch file must be run in a DB2 Command window.

Related concepts:

v “Windows Java Environment Settings” on page 39
v “Java Sample Programs” on page 107
v “Java Applet Considerations” on page 109

Related tasks:

v “Setting Up the sample Database” on page 42

Related reference:

v “Windows Supported Software for Building and Running Applications” on
page 15

Windows Java Environment Settings
To run JDBC and SQLJ programs on a supported Windows® platform with
DB2® JDBC support, CLASSPATH is automatically updated when DB2 is
installed to include:
v ″.″ (the current directory)
v the file sqllib\java\db2java.zip

v the file sqllib\java\db2jcc.jar

Chapter 2. Setup 39



To build SQLJ programs, CLASSPATH is also updated to include the file:

sqllib\java\sqlj.zip

To run SQLJ programs, CLASSPATH is also updated to include the file:

sqllib\java\runtime.zip

Note: The Microsoft Software Developer’s Kit for Java is not supported in
DB2 Version 8. It cannot be used for SQLJ customization nor for
running type 2 JDBC applications.

Related tasks:

v “Setting Up the Windows Java Environment” on page 38

SQL Procedures

Setting Up the Windows SQL Procedures Environment

SQL procedures are supported on the following Windows operating systems:
Windows NT, Windows 2000, Windows XP, and Windows .NET Server.

SQL Procedures require setting two environment variables,
DB2_SQLROUTINE_COMPILER_PATH and
DB2_SQLROUTINE_COMPILE_COMMAND, with your compiler
configuration on the server. If the environment variables for your compiler are
set as SYSTEM variables, no configuration is needed.

Restrictions:

A problem exists for 64-bit Windows when trying to set the variable
DB2_SQLROUTINE_COMPILER_PATH because it requires the complete path
to a file and will not allow arguments/switches. So if a user specified the
following, it would not work:

db2set DB2_SQLROUTINE_COMPILER_PATH="C:\MsSdk64\SetEnv.bat /XP64 /RETAIL"

The workaround is to create another batch file that calls Microsoft’s setup
batch file with the appropriate flags, for example:

db2set DB2_SQLROUTINE_COMPILER_PATH="C:\MsSdk64\SetEnvXP64.bat"

where the contents of C:\MsSdk64\SetEnvXP64.bat would be:
call C:\MsSdk64\SetEnv.bat /XP64 /RETAIL

This problem does not occur on Windows 32-bit environments because
vcvars32.bat does not require nor accept any parameters.

40 Building and Running Applications



Procedure:

Assuming the C++ compiler is installed on the C: drive, set the
DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable as follows:

For Microsoft Visual C++ Version 5.0:

db2set DB2_SQLROUTINE_COMPILER_PATH="c:\devstudio\vc\bin\vcvars32.bat"

For Microsoft Visual C++ Version 6.0:

db2set DB2_SQLROUTINE_COMPILER_PATH="c:\Micros~1\vc98\bin\vcvars32.bat"

Change the drive or the path, if necessary, to reflect the location of the C++
compiler on your system.

For the compile command, use the keyword SQLROUTINE_FILENAME to
replace the filename for the generated SQC, C, PDB, DEF, EXP, messages log
and shared library files. To use Microsoft Visual C++ Versions 5.0 and 6.0:

db2set DB2_SQLROUTINE_COMPILE_COMMAND="cl -Od -W2 /TC -D_X86_=1
-I%DB2PATH%\include SQLROUTINE_FILENAME.c /link -dll
-def:SQLROUTINE_FILENAME.def /out:SQLROUTINE_FILENAME.dll
%DB2PATH%\lib\db2api.lib"

This is the default compile command if the
DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry variable is not set.

Here’s an example of the environment setup commands for the Microsoft
Visual C++ Version 6.0 compiler. The following commands can be executed by
cutting and pasting them into a batch file and running the file in a DB2
command window. Be sure to make all necessary changes, including path
settings, for your particular environment:

@echo on
rem Setting the SQL PROCEDURE environment:
db2set DB2_SQLROUTINE_COMPILER_PATH="c:\Micros~1\vc98\bin\vcvars32.bat"
db2set DB2_SQLROUTINE_COMPILE_COMMAND="cl -Od -W2 /TC -D_X86_=1

-I%DB2PATH%\include SQLROUTINE_FILENAME.c /link -dll
-def:SQLROUTINE_FILENAME.def /out:SQLROUTINE_FILENAME.dll
%DB2PATH%\lib\db2api.lib"

@echo off

Related tasks:

v “Retaining Intermediate Files for SQL Procedures” on page 137
v “Customizing Precompile and Bind Options for SQL Procedures” on page

138
v “Backing Up and Restoring SQL Procedures” on page 139

Chapter 2. Setup 41



v “Creating SQL Procedures” on page 133
v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140

Related reference:

v “Windows Supported Software for Building and Running Applications” on
page 15

Sample Database

Setting Up the sample Database

To use the sample programs shipped with DB2, you need to create the sample
database on a server workstation. If you will be using a remote client to
access the sample database on the server, you need to catalog the sample
database on the client workstation.

Also, if you will be using a remote client to access the sample database on a
server that is running a different version of DB2, or running on a different
operating system, you need to bind the database utilities, including the DB2
CLI utility files, to the sample database.

Procedure:

Here are the steps to set up the sample database:
1. Creating the sample Database
2. Cataloging the sample Database
3. Binding the sample Database Utilities

Related tasks:

v “Creating the sample Database” on page 42
v “Cataloging the sample Database” on page 45
v “Binding the sample Database Utilities” on page 46

Creating the sample Database

You create the sample database on the command line with the db2sampl
command.

Prerequisites:

42 Building and Running Applications



You must have System Administrator (SYSADM) or System Control
(SYSCTRL) authority to create a database. SYSADM and SYSCTRL are,
respectively, the first and second highest levels of authority for DB2.

Procedure:

To create the database, do the following on the server:
1. Ensure that the location of db2sampl (the program that creates the sample

database) is in your path. The db2profile or db2cshrc file will put
db2sampl in your path, so it will remain there unless you change it.
v On UNIX servers, db2sampl is located in:

$HOME/sqllib/bin

where $HOME is the home directory of the DB2 instance owner.
v On Windows, db2sampl is located in:

%DB2PATH%\bin

where %DB2PATH% is where DB2 is installed.
2. Ensure that the DB2INSTANCE environment variable is set to the name of

the instance where you want to create the sample database. If it is not set,
you can set it with the following commands:
v On UNIX:

you can do this for the bash or Korn shell by entering:
DB2INSTANCE=instance_name
export DB2INSTANCE

and for the C shell by entering:
setenv DB2INSTANCE instance_name

v On Windows, enter:
set DB2INSTANCE=instance_name

where instance_name is the name of the database instance.
3. Create the sample database by entering db2sampl followed by where you

want to create the sample database. On UNIX platforms, this is a path, for
example: ″$HOME″, and would be entered as:

db2sampl path

For example:
db2sampl $HOME

On Windows, this is a drive, for example: ″C:″, and would be entered as:
db2sampl drive

Chapter 2. Setup 43



For example:
db2sampl C:

If you do not specify the path or drive, the installation program installs
the sample tables in the default path or drive specified by the
DFTDBPATH parameter in the database manager configuration file. The
authentication type for the database is the same as the instance in which it
is created.

Related tasks:

v “Creating the sample Database on Host or AS/400 and iSeries Servers” on
page 44

v “Cataloging the sample Database” on page 45
v “Binding the sample Database Utilities” on page 46

Creating the sample Database on Host or AS/400 and iSeries Servers

If you want to run the sample programs against a Host server such as DB2
UDB for z/OS and OS/390, or an AS/400 and iSeries server, you need to
create a database that contains the sample tables described in the SQL
Reference.

Note: You need DB2 Connect to connect to a host server.

Restrictions:

There are some SQL syntax and DB2 command differences between DB2 on
the workstation and DB2 on host systems. When accessing databases on DB2
UDB for z/OS and OS/390 or DB2 for AS/400 and iSeries, make sure your
programs use SQL statements and precompile/bind options that are
supported on these database systems.

Procedure:

To create the database:
1. Create the sample database in a DB2 workstation server instance using

db2sampl.
2. Connect to the sample database.
3. Export the sample table data to a file.
4. Connect to the host database.
5. Create the sample tables.
6. Import the sample table data from the file where you exported the data on

the workstation server.

44 Building and Running Applications



Related concepts:

v “Export Overview” in the Data Movement Utilities Guide and Reference

v “Import Overview” in the Data Movement Utilities Guide and Reference

Related tasks:

v “Cataloging the sample Database” on page 45
v “Binding the sample Database Utilities” on page 46

Related samples:

v “expsamp.sqb -- Export and import tables with table data to a DRDA
database (IBM COBOL)”

v “tbmove.sqc -- How to move table data (C)”
v “tbmove.sqC -- How to move table data (C++)”

Cataloging the sample Database

To access the sample database on the server from a remote client, you need to
catalog the sample database on the client workstation.

You do not need to catalog the sample database on the server workstation
because it was cataloged on the server when you created it.

Cataloging updates the database directory on the client workstation with the
name of the database that the client application wants to access. When
processing client requests, the database manager uses the cataloged name to
find and connect to the database.

Procedure:

To catalog the sample database on the remote client workstation, enter:
db2 catalog database sample as sample at node nodename

where nodename is the name of the server node.

You must also catalog the remote node before you can connect to the
database.

Related tasks:

v “Cataloging the TCP/IP node on the client” in the Installation and
Configuration Supplement

v “Cataloging a database using the CLP” in the Installation and Configuration
Supplement

v “Cataloging the NetBIOS node on the DB2 client” in the Installation and
Configuration Supplement

Chapter 2. Setup 45



v “Cataloging the Named Pipes node on the client” in the Installation and
Configuration Supplement

v “Cataloging the APPC node on the DB2 client” in the Installation and
Configuration Supplement

v “Binding the sample Database Utilities” on page 46

Binding the sample Database Utilities

If you will be accessing the sample database on the server from a remote client
that is running a different version of DB2 or running on a different operating
system, you need to bind the database utilities, including the DB2 CLI
utilities, to the sample database.

Binding creates the package that the database manager needs in order to
access the database when an application is executed. Binding can be done
explicitly by specifying the BIND command against the bind file created during
precompilation.

Procedure:

You bind the database utilities differently depending on the platform of the
client workstation you are using.

On a UNIX client workstation:
1. Connect to the sample database by entering:

db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance
where the sample database is located.

2. Bind the utilities to the database by entering:
db2 bind BNDPATH/@db2ubind.lst blocking all sqlerror continue \
messages bind.msg grant public

db2 bind BNDPATH/@db2cli.lst blocking all sqlerror continue \
messages cli.msg grant public

where BNDPATH is the path where the bind files are located, such as
$HOME/sqllib/bnd, where $HOME is the home directory of the DB2 instance
owner.

3. Verify that the bind was successful by checking the bind message files
bind.msg and cli.msg.

On a client workstation running a Windows operating system:
1. From the Start Menu, select Programs.

46 Building and Running Applications



2. From the Programs Menu (or from ’All Programs’ on Windows XP), select
IBM DB2.

3. From the IBM DB2 menu, select the DB2 Command Window.
The command window displays.

4. Connect to the sample database by entering:
db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance
where the sample database is located.

5. Bind the utilities to the database by entering:
db2 bind "%DB2PATH%\bnd\@db2ubind.lst" blocking all
sqlerror continue messages bind.msg grant public

db2 bind "%DB2PATH%\bnd\@db2cli.lst" blocking all
sqlerror continue messages cli.msg grant public

where %DB2PATH% is the path where DB2 is installed.
6. Exit the command window, and verify that the bind was successful by

checking the bind message files, bind.msg and cli.msg.

For all clients accessing host servers, specify one of the following .lst files
instead of db2ubind.lst:

ddcsmvs.lst
for DB2 for z/OS and OS/390

ddcsvm.lst
for DB2 for VM

ddcsvse.lst
for DB2 for VSE

ddcs400.lst
for DB2 for AS/400 and iSeries

For example:
v If accessing a DB2 for z/OS and OS/390 server from a UNIX client, enter:

db2 bind BNDPATH/@ddcsmvs.lst blocking all sqlerror continue \
messages bind.msg grant public

v If accessing a DB2 for z/OS and OS/390 server from a Windows client,
enter:

db2 bind "%DB2PATH%\bnd\@ddcsmvs.lst" blocking all
sqlerror continue messages bind.msg grant public

Related reference:

v “BIND” in the Command Reference

Chapter 2. Setup 47



Migrating Applications

DB2 Version 8 supports the following DB2 versions for migration:
v DB2 Version 6
v DB2 Version 7.1
v DB2 Version 7.2
v DataJoiner® Version 2.1.x

When you migrate to a later version of DB2, your database and node
directories are migrated automatically. To migrate from any other previous
version of DB2, you must first migrate to one of the above supported versions
that supports this migration, and then migrate from that version to DB2
version 8.

Points to keep in mind when migrating from the following specific
environments:

Java The type 3 driver, formerly known as the ″net″ driver, is deprecated.
DB2 Java applets should be migrated to the type 4 driver. To convert a
type 3 JDBC applet to use the new type 4 driver, make the following
changes:
1. The type 4 driver archive is db2jcc.jar. In the .html file

associated with the applet, change the archive from db2java.zip to
db2jcc.jar. Copy db2jcc.jar to the web server.

2. The type 4 driver class name is com.ibm.db2.jcc.DB2Driver. In the
applet .java files, change the type 3 driver class name,
COM.ibm.db2.jdbc.net.DB2Driver, to the type 4 class name. There
may not be a reference to the driver class if the applet uses
javax.sql.DataSource to obtain connections.

3. Both the type 3 and type 4 driver use a data source URL of the
same form: jdbc:db2://server:portnumber/dbname. However, the
three parts: server, portnumber, and dbname have a different
meaning in the two drivers.
The type 3 driver is a three tier model with a client (the browser
running the applet), a JDBC Applet Server, and a DB2 server. The
server and portnumber in the URL refer to the JDBC Applet
Server. The dbname is the database alias cataloged on the
system running the JDBC Applet Server.

The type 4 driver client connects directly to the DB2 server so the
server and portnumber are those of the DB2 server TCP/IP
listener. The dbname is the database alias cataloged on the DB2
server system.

48 Building and Running Applications



If the applet uses DriverManager.getConnection to connect to DB2,
update the .java files and (if necessary) the .html file with the
new URL for the type 4 driver.

4. If the applet makes use of COM.ibm.db2.jdbc.DB2DataSource, new
javax.sql.DataSource objects of the class
com.ibm.jcc.db2.DB2SimpleDataSource must be created. The applet
must be updated to use this new class.

Note: The type 4 driver does not support JDBC 2.0 Optional Package
APIs for connection pooling
(javax.sql.ConnectionPoolDataSource,
javax.sql.PooledConnection). If the applet makes use of these
type 3 features, it cannot be migrated to the type 4 driver.

32-bit to 64-bit Environments
It may not be necessary to migrate your applications from 32-bit to
64-bit. DB2 Version 8 supports running an existing 32-bit local
application in all 64-bit DB2 instances except Linux IA64. In order to
do this, the user must rebind the 32-bit application and then run it
with the appropriate library path. For example, to run a 32-bit
application in a 64-bit DB2 instance on AIX:
v On bash or Korn shell:

export LIBPATH=$HOME/sqllib/lib32
my32bitapp

v On C shell:
setenv LIBPATH $HOME/sqllib/lib32
my32bitapp

If you want to migrate a 32-bit application to a 64-bit operating
environment while still running on a 32-bit server, use the
LONGERROR precompile option to prepare for porting the
application. Set LONGERROR to YES in the 32-bit environment so
that the precompiler returns an error whenever it encounters a host
variable of the long type. Then follow these steps:
1. Prune the use of long types for host variables, unless long types

are necessary. Instead, use the new portable host variables, sqlint32
or sqluint32 . For example:

EXEC SQL BEGIN DECLARE SECTION;
long y; /* this declaration generates an error on 64 bit */
sqlint32 x; /* this declaration is acceptable for 64 bit */
EXEC SQL END DECLARE SECTION;

2. Precompile the application against a database on a 64-bit server.
This creates a new package for the application that is being ported.

3. Compile the application in 64-bit mode.
4. Link the application with the new 64-bit DB2 libraries.

Chapter 2. Setup 49



5. Bind the application to a database on a 64-bit server.

HP-UX
If you are migrating DB2 from HP-UX Version 10 or earlier to HP-UX
Version 11, your DB2 programs must be re-precompiled with DB2 on
HP-UX Version 11 (if they include embedded SQL), and must be
re-compiled. This includes all DB2 applications, stored procedures,
user-defined functions and user exit programs. As well, DB2 programs
that are compiled on HP-UX Version 11 may not run on HP-UX
Version 10 or earlier. DB2 programs that are compiled and run on
HP-UX Version 10 may connect remotely to HP-UX Version 11 servers.

Micro Focus COBOL
Any existing applications precompiled with DB2 Version 2.1.1 or
earlier and compiled with Micro Focus COBOL should be
re-precompiled with the current version of DB2, and then recompiled
with Micro Focus COBOL. If these applications built with the earlier
versions of the IBM® precompiler are not re-precompiled, there is a
possibility of database corruption if abnormal termination occurs.

Here are points to keep in mind when developing your applications. They
will help make your applications portable:
v On UNIX, use only the default library search path, /usr/lib:/lib, in your

applications. On Windows® operating systems, ensure the LIB environment
variable points to %DB2PATH%\lib by using:

set LIB=%DB2PATH%\lib;%LIB%

Also, create symbolic links between the default path and the version of DB2
you are using. Ensure that the link is to the minimum level of DB2 required
by your applications. Refer to the Quick Beginnings book for your platform
for information about setting links.

v If your application requires a particular version of DB2, code the path that
specifies the DB2 version in your application. For example, if your AIX®

application requires DB2 Version 5, code /usr/lpp/db2_05_00/lib.
Ordinarily, you do not need to do this.

v When you are building an application for production, rather than internal
development, the path in your application should not point to the instance
owner’s copy of the sqllib/lib directory on UNIX, or the sqllib\lib
directory on Windows operating systems. This makes applications highly
dependent on specific user names and environments.

v Generally, do not use the following environment variables to alter search
paths in a particular environment: LIBPATH (AIX), SHLIB_PATH (HP-UX
32-bit), LD_LIBRARY_PATH (HP-UX 64-bit, Linux, and Solaris), and LIB
(Windows). These variables override the search paths specified in the
applications running in the environment, so applications might not be able
to find the libraries or the files they need.

50 Building and Running Applications



v In DB2 Universal Database™ Versions 6, 7, and 8, all character array items
with string semantics have type char, instead of other variations, such as
unsigned char. Any applications you code with DB2 Universal Database
Version 6, Version 7, or Version 8 should follow this practice.
If you have DB2 Version 1 applications which use unsigned char, your
compiler might produce warnings or errors because of type clashes between
unsigned char in Version 1 applications and char in Version 6.1, Version 7,
or Version 8 function prototypes. If this occurs, use the compiler option
-DSQLOLDCHAR to eliminate the problem.

On UNIX platforms, if you have applications from a previous DB2 release
version and you want them to run in both a database instance of the previous
version as well as a DB2 Version 8 instance on the same machine, you may
need to make some changes to your environment. To determine what changes
to make, answer the following questions, and then review the ″Conditions″
section to see if any of the conditions apply to your situation.

An AIX system is used to explain the points raised. The same concepts apply
to other UNIX platforms, but the details may differ, such as environment
variables and specific commands.

Questions

Question 1: How was the application on the previous DB2 version linked to
the DB2 client run-time library, for example, libdb2.a on AIX?

To determine the embedded shared library search path for an executable, use
one of the following system commands in the directory where the executable
resides (which may be /usr/bin or your instance directory:

AIX dump -H executable_filename

HP-UX
chatr executable_filename

Linux objdump -p executable_filename

Solaris
dump -Lv executable_filename

where executable_filename is the name of the executable file for the application.

The following is a sample dump listing from DB2 Version 7.2 for the AIX C
sample application, dbcat, taken in the samples sub-directory of the DB2
instance, /home/dbinst/samples/c:

Chapter 2. Setup 51



Sample Dump Listing for C application dbcat

──────────────────────────────────────────────────────────────────────────

dbcat:

***Loader Section***
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x0000000f 0x00000015 0x00000047

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000003 0x00000284 0x0000007f 0x000002cb

***Import File Strings***
INDEX PATH BASE MEMBER
0 /home/db2inst/sqllib/lib:/usr/lib:/lib

1 libc.a shr.o
2 libdb2.a shr.o

──────────────────────────────────────────────────────────────────────────

Line 0 (zero) shows the directory paths that the executable searches to find the
shared libraries to which it is linked. Lines 1, and 2 show the shared libraries
to which the application is linked.

Depending on how the application was built, you may see the following
paths: /usr/lpp/db2_07_01_0000/lib, INSTHOME/sqllib/lib (where INSTHOME is
the home directory of the database instance owner), or just the /usr/lib:/lib
combination.

Question 2: How are the DB2 run-time libraries configured on your system?

When either of DB2 Versions 1, 2, 5, 6.1 or 7 is installed, there is an optional
step which creates symbolic links from the system default shared library path
/usr/lib to the DB2 install path which contains the DB2 client run-time
libraries.

The install paths for the different DB2 versions on AIX are as follows:

Version 1
/usr/lpp/db2_01_01_0000/lib

Version 2
/usr/lpp/db2_02_01/lib

52 Building and Running Applications



Version 5
/usr/lpp/db2_05_00/lib

Version 6.1
/usr/lpp/db2_06_01/lib

Version 7
/usr/lpp/db2_07_01/lib

Version 8
/usr/opt/db2_08_01/lib

In all cases, the run-time shared libraries are named libdb2.a.

Only one version of these libraries can be the default at any one time. DB2
provides this default so that when you build an application, it does not
depend on a particular version of DB2.

Question 3: Do you specify different search paths in your environment?

You can override the shared library search path coded in your application
using the LIBPATH environment variable on AIX, SHLIB_PATH on HP-UX,
and LD_LIBRARY_PATH on Linux and Solaris. You can see the library search
path using the appropriate system command for your platform given in the
answer to Question 1.

Conditions

Once you have the answers to the questions above, you may need to make
changes to your environment. Read the conditions listed below. If one of the
conditions applies to your situation, make the necessary changes.

Condition 1: If a Version 7 application loads a shared library out of the AIX
default shared library path /usr/lib/libdb2.a, and
v If there is a symbolic link from /usr/lib/libdb2.a to

/usr/lpp/db2_07_01/lib/libdb2.a, and the database server is DB2
Universal Database Version 8 for AIX, do one of the following:
– Change the symbolic link to point to:

/usr/opt/db2_08_01/lib/libdb2.a

As root, you can change links using the ″db2ln″ command as follows:
/usr/opt/db2_08_01/cfg/db2ln

– Set the LIBPATH environment variable to point to
/usr/opt/db2_08_01/lib or INSTHOME/sqllib/lib, where INSTHOME is
the home directory of the Version 8 DB2 instance owner.

Chapter 2. Setup 53



– Configure a TCP/IP connection from the application (client) instance to
the server instance.

v If there is a symbolic link from /usr/lib/libdb2.a to
/usr/opt/db2_08_01/lib/libdb2.a, and the database server is DB2 Version
7, configure a TCP/IP connection from the application (client) instance to
the server instance.

Condition 2: If a Version 7 application loads a shared library out of the
$HOME path of a DB2 Version 7 instance owner
($HOME/sqllib/lib/libdb2.a), and the database server is DB2 Universal
Database Version 8 for AIX, do one of the following:
v Migrate the application instance to the same version as the database server

instance.
v Set the LIBPATH environment variable to point to /usr/opt/db2_08_01/lib

or INSTHOME/sqllib/lib, where INSTHOME is the home directory of the
Version 8 instance owner.

v Configure a TCP/IP connection from the application (client) instance to the
server instance.

Condition 3: If a Version 7 application loads a shared library out of the DB2
Version 7 install path (/usr/lpp/db2_07_01/lib/libdb2.a), and the database
server is DB2 Universal Database Version 8 for AIX, do one of the following:
v Set the LIBPATH environment variable to point to /usr/opt/db2_08_01/lib

or INSTHOME/sqllib/lib, where INSTHOME is the home directory of the
database instance owner.

v Configure a TCP/IP connection from the application (client) instance to the
server instance.

Condition 4: If a Version 7 application loads a shared library out of the DB2
Universal Database Version 8 for AIX install path
(/usr/opt/db2_08_01/lib/libdb2.a), and the database server is DB2 Version 7,
configure a TCP/IP connection from the application (client) instance to the
server instance.

Related concepts:

v “Migration recommendations” in the Quick Beginnings for DB2 Servers

v “JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 4 Driver” in the
Application Development Guide: Programming Client Applications

v “JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 4 Driver”
in the Application Development Guide: Programming Client Applications

Related tasks:

v “Setting Up the Application Development Environment” on page 19

54 Building and Running Applications



v “Creating links for DB2 files” in the Installation and Configuration Supplement

v “Migrating databases” in the Quick Beginnings for DB2 Servers

v “Migrating Explain tables” in the Quick Beginnings for DB2 Servers

v “Migrating instances (UNIX)” in the Quick Beginnings for DB2 Servers

v “Taking a V6 or V7 DB2 server offline for DB2 migration” in the Quick
Beginnings for DB2 Servers

v “Migrating DB2 (Windows)” in the Quick Beginnings for DB2 Servers

v “Migrating DB2 (UNIX)” in the Quick Beginnings for DB2 Servers

Related reference:

v “Migration restrictions” in the Quick Beginnings for DB2 Servers

v “Version 8 incompatibilities between releases” in the Administration Guide:
Planning

v “Version 7 incompatibilities between releases” in the Administration Guide:
Planning

Where to Go Next

Once your environment is set up, you are ready to build your DB2
applications. The following chapter discusses the sample programs and
related files, including the build files. The chapters following this use the
build files and samples to show you how to compile, link, and run your
applications in your programming environment. Read the specific chapter for
your particular application development needs.

Chapter 2. Setup 55



56 Building and Running Applications



Chapter 3. Sample Programs and Related Files

Sample Files . . . . . . . . . . . . 57
Sample Programs: Structure and Design. . . 62
Sample Programs by Language and
Application Interface . . . . . . . . . 69

C/C++ Samples. . . . . . . . . . 69
DB2 CLI Samples . . . . . . . . . 72
JDBC Samples . . . . . . . . . . 74
SQLJ Samples . . . . . . . . . . 77
Java WebSphere Samples . . . . . . . 79
Java Plugin Samples . . . . . . . . 79
COBOL Samples . . . . . . . . . 80
SQL Procedure Samples . . . . . . . 84
Visual Basic Samples . . . . . . . . 86
Visual C++ Samples . . . . . . . . 88

Windows Management Instrumentation
Samples . . . . . . . . . . . . 88
Object Linking and Embedding (OLE)
Samples . . . . . . . . . . . . 89
Object Linking and Embedding Database
(OLE DB) Table Function Samples . . . 90
Command Line Processor (CLP) Samples 90
REXX Samples . . . . . . . . . . 91
Log Management User Exit Samples . . . 93

Build Files, Makefiles, and Error-Checking
Utilities . . . . . . . . . . . . . 94

Build Files . . . . . . . . . . . 94
Makefiles . . . . . . . . . . . . 97
Error-Checking Utilities . . . . . . . 101

This chapter describes sample programs and related files for the programming
languages for all platforms supported by DB2. It presents the design for the
samples based on the component structure of DB2, and gives a listing of the
DB2 samples with a description of each one. It also explains the uses of the
build files, makefiles and error-checking utilities that come with DB2.

Sample Files

The sample programs come with the DB2® Application Development (DB2
AD) Client. Not all sample programs are available on all platforms or
supported programming languages. You can use the sample programs as
templates to create your own applications, and as a learning tool to
understand DB2 functionality.

DB2 sample programs are provided ″as is″ without any warranty of any kind.
The user, and not IBM, assumes the entire risk of quality, performance, and
repair of any defects.

Besides the sample program files, other sample files are provided by DB2 in
the samples directories under sqllib/samples (UNIX) and under
sqllib\samples (Windows). These include build files and makefiles to compile
and link the sample programs, error-checking utility files which are linked in
to most sample programs, and various script files to assist in application
development. For example, scripts are provided to catalog and uncatalog
stored procedures and UDFs in several language sub-directories. Each samples
directory has a README file which describes the files contained in the
directory.

© Copyright IBM Corp. 1993 - 2002 57



HTML versions of most sample program files are provided, accessible in the
online documentation. These ’samples in HTML’ are linked into the
documentation topics to demonstrate the functionality described by them.
Keywords, such as SQL statements and DB2 APIs, are hot-linked within the
samples in HTML so the user can go directly to the documentation describing
them. Most samples in HTML have a link in the comment section at the top of
the file to a sample output file showing typical results of running the
compiled sample program. Please note that the actual output is, in many
cases, machine and platform-dependent, so the output you receive from
running the same program may vary.

Below is a table showing the sample directories and README files for the
main supported programming languages/APIs by platform. The README
files are hot-linked in the online documentation, and the samples listings
within them have hotlinks to the sample file source code. You can also access
the sample files in the listed samples directories. For the directory paths, the
UNIX-style slashes are used, as in samples/c, except where the directory is for
Windows only, as in samples\VB\ADO.

Table 1. Sample README files by Platform

Platform —>
Language

AIX HP-UX Linux Solaris Windows

C
samples/c

README README README README README

C++
samples/cpp

README README README README README

CLI
samples/cli

README README README README README

JDBC
samples/java

README README README README README

SQLJ
samples/java

README README README README README

IBM COBOL
samples/cobol

README n/a n/a n/a README

Micro Focus COBOL
samples/cobol_mf

README README n/a README README

Visual Basic
samples\VB\ADO

n/a n/a n/a n/a ReadMe.txt

SQL Procedures
samples/sqlproc

README README README README README

CLP
samples/clp

README README README README README

58 Building and Running Applications



Sample program file extensions differ for each supported language, and for
embedded SQL and non-embedded SQL programs within each language. File
extensions may also differ for groups of programs within a language. These
different sample file extensions are categorized in the following tables:

Sample File Extensions by Language
Table 2.

Sample File Extensions by Program Group
Table 3 on page 60.

Table 2. Sample File Extensions by Language

Language Directory Embedded SQL Programs Non-embedded SQL
Programs

C samples/c
samples/cli (CLI programs)

.sqc .c

C++ samples/cpp .sqC (UNIX)
.sqx (Windows)

.C (UNIX)

.cxx (Windows)

COBOL samples/cobol
samples/cobol_mf

.sqb .cbl

JAVA samples/java/jdbc
samples/java/sqlj
samples/java/WebSphere
samples/java/plugin

.sqlj .java

REXX samples/rexx .cmd .cmd

Visual Basic samples\VB\ADO
samples\VB\MTS
samples\VB\RDO

.bas .frm .vbp

Visual C++ samples\VC\ADO .cpp .dsp .dsw

Chapter 3. Sample Programs and Related Files 59



Table 3. Sample File Extensions by Program Group

Sample Group Directory File Extension

CLP samples/clp .db2

OLE samples\ole\msvb (Visual Basic)
samples\ole\msvc (Visual C++)

.bas .vbp (Visual Basic)

.cpp (Visual C++)

OLE DB samples\oledb .db2

SQL Procedures samples/sqlproc .db2 (SQL Procedure scripts)
.c (CLI Client Applications)
.sqc (embedded C Client Applications)
.java (JDBC Client Applications)

User Exit samples/c .cadsm (UNIX & Windows)
.cdisk (UNIX & Windows)
.ctape (UNIX)
.cxbsa (UNIX & Windows)

Note:

Directory Delimiters
The directory delimiter on UNIX® is a /. On Windows® it is a
\. In the tables, the UNIX delimiters are used unless the
directory is only available on Windows.

Embedded SQL Programs
Require precompilation, except for REXX embedded SQL
programs where the embedded SQL statements are interpreted
when the program is run.

IBM® COBOL Samples
Are only supplied for AIX® and Windows 32-bit operating
systems in the cobol subdirectory.

Micro Focus COBOL Samples
Are only supplied for AIX, HP-UX, Solaris Operating
Environment, and Windows 32-bit operating systems in the
cobol_mf subdirectory.

Java™ Samples
Are Java Database Connectivity (JDBC) applets, applications,
and routines, embedded SQL for Java (SQLJ) applets,
applications, and routines. Also, WebSphere samples and plugin
example files for the DB2 Control Center. Java samples are
available on all supported DB2 platforms.

REXX Samples
Are only supplied for AIX and Windows 32-bit operating
systems.

60 Building and Running Applications



CLP Samples
Are Command Line Processor scripts that execute SQL
statements.

OLE Samples
Are for Object Linking and Embedding (OLE) in Microsoft®

Visual Basic and Microsoft Visual C++, supplied for Windows
operating systems only.

Visual Basic Samples
Are ActiveX Data Objects, Remote Data Objects, and Microsoft
Transaction Server samples, supplied on Windows operating
systems only.

Visual C++ Samples
Are ActiveX Data Object samples, supplied on Windows
operating systems only.

User Exit samples
Are Log Management User Exit programs used to archive and
retrieve database log files. The files must be renamed with a .c
extension and compiled as C language programs.

You can find the sample programs in the samples subdirectory of the directory
where DB2 has been installed. There are subdirectories for each supported
language. The following examples show you how to locate the samples
written in C or C++ on each supported platform.
v On UNIX platforms.

You can find the C source code for embedded SQL and DB2 API programs
in sqllib/samples/c under your database instance directory; the C source
code for DB2 CLI programs is in sqllib/samples/cli. For additional
information about the programs in the samples tables, refer to the README
file in the appropriate samples subdirectory under your DB2 instance. The
README file will contain any additional samples that are not listed in this
book.

v On Windows operating systems.

You can find the C source code for embedded SQL and DB2 API programs
in sqllib\samples\c under the DB2 install directory; the C source code for
DB2 CLI programs is in sqllib\samples\cli. For additional information
about the sample programs in the samples tables, refer to the README file in
the appropriate sqllib\samples subdirectory. The README file will contain
any additional samples that are not listed in this book.

The sample programs directory is typically read-only on most platforms.
Before you alter or build the sample programs, copy them to your working
directory.

Chapter 3. Sample Programs and Related Files 61



Related concepts:

v “Build Files” on page 94
v “Makefiles” on page 97
v “Error-Checking Utilities” on page 101
v “Sample Programs: Structure and Design” on page 62

Related reference:

v “C/C++ Samples” on page 69
v “DB2 CLI Samples” on page 72
v “JDBC Samples” on page 74
v “SQLJ Samples” on page 77
v “SQL Procedure Samples” on page 84
v “Visual Basic Samples” on page 86
v “Visual C++ Samples” on page 88
v “Object Linking and Embedding (OLE) Samples” on page 89
v “Object Linking and Embedding Database (OLE DB) Table Function

Samples” on page 90
v “Command Line Processor (CLP) Samples” on page 90
v “Log Management User Exit Samples” on page 93
v “COBOL Samples” on page 80
v “Java WebSphere Samples” on page 79
v “Java Plugin Samples” on page 79
v “Windows Management Instrumentation Samples” on page 88
v “REXX Samples” on page 91

Sample Programs: Structure and Design

Most of the DB2® samples in C, CLI, C++, Java, and Visual Basic ADO are
organized to reflect an object-based design model of the database components.
The samples are grouped in categories representing different levels of DB2.
The level to which a sample belongs is indicated by a two character prefix at
the beginning of the sample name (for Java, the first letter is capitalized). Not
all levels are represented in the samples for each Application Programming
Interface, but for the samples as a whole, the levels are represented as follows:

prefix DB2 Level

il Installation Image Level

cl Client Level

in Instance Level

62 Building and Running Applications



db Database Level

ts Table Space Level

tb Table Level

dt Data Type Level

The levels show a hierarchical structure. The Installation image level is the top
level of DB2. Below this level, a client-level application can access different
instances; an instance can have one or more databases; a database has table
spaces within which tables exist, and which in turn hold data of different data
types.

This design does not include all DB2 samples. The purpose of some samples
is to demonstrate different methods for accessing data. These methods are the
main purpose of these samples so they are represented by these methods in a
similar manner as the above:

prefix Programming Method

fn SQL Function

sp Stored Procedure

ud User Defined Function

Besides these categories, there are a set of tutorial samples to introduce basic
concepts of database programming. These samples use some of the simpler
functions represented in the samples design, and begin with the characters:
″tut″.

There are other samples not included in this design, such as the Log
Management User Exit samples, samples in COBOL, Visual C++, REXX,
Object Linking and Embedding (OLE) samples, CLP scripts, and SQL
Procedures.

Below are the sample programs implemented in this design.

Note: Java™ program names have the first character, and sometimes other
characters, in upper case, and do not have the underscores in the
tutorial sample names. Visual Basic samples have some characters in
upper case (but not the first character).

Table 4. Sample Program Design in DB2 Universal Database

Sample Program Description

Tutorial Samples

Chapter 3. Sample Programs and Related Files 63



Table 4. Sample Program Design in DB2 Universal Database (continued)

Sample Program Description

tut_mod How to modify table data.

Supported languages/APIs: C, C++, CLI, JDBC

tut_read How to read tables.

Supported languages/APIs: C, C++, CLI, JDBC

tut_use How to use a database.

Supported languages/APIs: C, C++, CLI

Installation Image Level

ilinfo How to get/set installation level info.

Supported languages/APIs: CLI, JDBC

Client Level

cliExeSQL How to execute SQL statements.

Supported languages/APIs: Visual Basic/ADO

cli_info How to get/set client level information.

Supported languages/APIs: C, C++, CLI, Visual Basic/ADO

clihandl How to allocate and free handles.

Supported languages/APIs: CLI

clisqlca How to work with SQLCA data.

Supported languages/APIs: CLI

clisnap How to capture a client level snapshot.

Supported languages/APIs: C, C++

Instance Level

inattach How to attach to/detach from an instance.

Supported languages/APIs: C, C++

inauth How to display authorities at instance level.

Supported languages/APIs: C, C++

ininfo How to get and set instance level information.

Supported languages/APIs: C, C++, CLI

insnap How to capture an instance level snapshot.

Supported languages/APIs: C, C++

64 Building and Running Applications



Table 4. Sample Program Design in DB2 Universal Database (continued)

Sample Program Description

instart How to stop and start the current local instance.

Supported languages/APIs: C, C++

Database Level

dbauth How to grant/display/revoke authorities at the database level.

Supported languages/APIs: C, C++, JDBC, SQLJ

dbcfg How to configure database and database manager parameters.

Supported languages/APIs: C, C++

dbconn How to connect/disconnect from a database.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ, Visual Basic/ADO

dbcreate How to create and drop databases.

Supported languages/APIs: C, C++

dbinfo How to get and set information at a database level.

Supported languages/APIs: C, C++, CLI, JDBC, Visual Basic/ADO

dbinline How to use inline SQL procedure language.

Supported languages/APIs: C

dbCommit How to control autocommit dynamically on the database level.

Supported languages/APIs: Visual Basic/ADO

dbmcon How to connect/disconnect from multiple databases.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

dbmconx How to connect/disconnect from multiple databases.

Supported languages/APIs: CLI

dbmigrat How to migrate a database.

Supported languages/APIs: C, C++

dbnative How to translate a statement with an ODBC escape clause.

Supported languages/APIs: CLI, JDBC

dbpkg How to work with packages.

Supported languages/APIs: C, C++

dbrecov How to recover a database.

Supported languages/APIs: C, C++

Chapter 3. Sample Programs and Related Files 65



Table 4. Sample Program Design in DB2 Universal Database (continued)

Sample Program Description

dbsample How to create the sample database including Host and AS/400® tables and
views.

Supported languages/APIs: C

DbSeq How to create, alter and drop a sequence in a database.

Supported languages/APIs: JDBC

dbsnap How to capture a database level snapshot.

Supported languages/APIs: C, C++

dbthrds How to use threads.

Supported languages/APIs: C, C++

dbuse How to use database objects.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

dbusemx How to use database objects with embedded SQL.

Supported languages/APIs: CLI

Table Space Level

tscreate How to create/drop bufferpools and table spaces.

Supported languages/APIs: C, C++

tsinfo How to get information at table space level.

Supported languages/APIs: C, C++

Table Level

tbconstr How to work with table constraints.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

tbcreate How to create, alter, and drop tables.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

TbGenCol How to use generated columns.

Supported languages/APIs: JDBC

tbident How to use identity columns.

Supported languages/APIs: C, JDBC, SQLJ

tbinfo How to get and set information at a table level.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

66 Building and Running Applications



Table 4. Sample Program Design in DB2 Universal Database (continued)

Sample Program Description

tbmod How to modify information in a table.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

tbmove How to move table data.

Supported languages/APIs: C, C++

tbpriv How to grant/display/revoke table level privileges.

Supported languages/APIs: C, C++, JDBC, SQLJ

tbread How to read information in a table.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

tbreorg How to reorganize a table.

Supported languages/APIs: C, C++

tbsavept How to use external savepoints.

Supported languages/APIs: C

tbtemp How to use a declared temporary table.

Supported languages/APIs: C, JDBC

tbtrig How to use a trigger on a table.

Supported languages/APIs: C, C++, JDBC, SQLJ

Data Type Level

dtformat How to use load and import data format extensions.

Supported languages/APIs: C

dtHier How to retrieve hierarchical data.

Supported languages/APIs: Visual Basic/ADO

dtinfo How to get information about data types.

Supported languages/APIs: CLI, JDBC

dtlob How to read and write LOB data.

Supported languages/APIs: C, C++, CLI, JDBC, Visual Basic/ADO

dtstruct How to create, use, and drop a hierarchy of structured types and typed tables.

Supported languages/APIs: C++

dtudt How to create/use/drop user-defined distinct types.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

Chapter 3. Sample Programs and Related Files 67



Table 4. Sample Program Design in DB2 Universal Database (continued)

Sample Program Description

DB2 Functions

fnuse How to use SQL functions.

Supported languages/APIs: C, C++

Stored Procedures

spcall How to call stored procedures.

Supported languages/APIs: CLI, Visual Basic/ADO

spclient Client application that calls the stored procedures in spserver.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

spserver Stored procedure routines called by spclient.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

User-Defined Functions

udfcli Client application to call UDFs in udfsrv.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

udfsrv User-defined function library called by udfcli.

Supported languages/APIs: C, C++, CLI, JDBC, SQLJ

udfjcli Client application to call Parameter Style Java user-defined functions in udfjsrv.

Supported languages/APIs: JDBC, SQLJ

udfjsrv Parameter Style Java user-defined function library called by udfjcli.

Supported languages/APIs: JDBC, SQLJ

udfsqlcl Client application to call Java user-defined functions in udfsqlsv.

Supported languages/APIs: JDBC

udfsqlsv Java user-defined function library with SQL statements called by udfsqlcl.

Supported languages/APIs: JDBC

udfUse How to create and work with UDTs and UDFs.

Supported languages/APIs: Visual Basic/ADO

Related concepts:

v “Build Files” on page 94
v “Makefiles” on page 97
v “Error-Checking Utilities” on page 101

68 Building and Running Applications



v “Sample Files” on page 57

Related reference:

v “C/C++ Samples” on page 69
v “DB2 CLI Samples” on page 72
v “JDBC Samples” on page 74
v “SQLJ Samples” on page 77
v “SQL Procedure Samples” on page 84
v “Visual Basic Samples” on page 86
v “Visual C++ Samples” on page 88
v “Object Linking and Embedding (OLE) Samples” on page 89
v “Object Linking and Embedding Database (OLE DB) Table Function

Samples” on page 90
v “Command Line Processor (CLP) Samples” on page 90
v “Log Management User Exit Samples” on page 93
v “COBOL Samples” on page 80
v “Java WebSphere Samples” on page 79
v “Java Plugin Samples” on page 79
v “Windows Management Instrumentation Samples” on page 88
v “REXX Samples” on page 91

Sample Programs by Language and Application Interface

C/C++ Samples

Note: File extensions:

C .c (non-embedded SQL)

.sqc (embedded SQL)

C++ .C (non-embedded SQL)

.sqC (embedded SQL)

Table 5. C/C++ Sample Program Files

Sample Program
Name

Program Description

Tutorial Samples - Programs that demonstrate basic database operations.

tut_mod.sqc,
tut_mod.sqC

How to modify table data.

tut_read.sqc,
tut_read.sqC

How to read tables.

Chapter 3. Sample Programs and Related Files 69



Table 5. C/C++ Sample Program Files (continued)

Sample Program
Name

Program Description

tut_use.sqc,
tut_use.sqC

How to use a database.

Client Level - Samples that deal with the client level of DB2.

cli_info.c,
cli_info.C

How to get and set client level information.

clisnap.c, clisnap.C How to capture a snapshot at the client level.

Instance Level - Samples that deal with the instance level of DB2.

inattach.c,
inattach.C

How to attach to/detach from an instance.

inauth.sqc,
inauth.sqC

How to display authorities at instance level.

ininfo.c, ininfo.C How to get and set instance level information.

insnap.c, insnap.C How to capture a snapshot at the instance level.

instart.c, instart.C How to stop and start the current local instance.

Database Level - Samples that deal with database objects in DB2.

dbauth.sqc,
dbauth.sqC

How to grant/display/revoke authorities at the database level

dbcfg.sqc, dbcfg.sqC How to configure database and database manager parameters.

dbconn.sqc,
dbconn.sqC

How to connect and disconnect from a database.

dbcreate.c,
dbcreate.C

How to create and drop databases.

dbinfo.c, dbinfo.C How to get and set information at a database level.

dbinline.sqc How to use inline SQL procedure language.

dbmcon.sqc,
dbmcon.sqC

How to connect to and disconnect from multiple databases.

dbmcon1.h, dbmcon1.h Header file for dbmcon1.sqc, dbmcon1.sqC

dbmcon1.sqc,
dbmcon1.sqC

Support file for dbmcon.sqc, dbmcon.sqC.

dbmcon2.h, dbmcon2.h Header file for dbmcon2.sqc, dbmcon2.sqC

dbmcon2.sqc,
dbmcon2.sqC

Support file for dbmcon.sqc, dbmcon.sqC.

dbmigrat.c,
dbmigrat.C

How to migrate a database.

dbpkg.sqc, dbpkg.sqC How to work with packages.

70 Building and Running Applications



Table 5. C/C++ Sample Program Files (continued)

Sample Program
Name

Program Description

dbrecov.sqc,
dbrecov.sqC

How to recover a database.

dbsample.sqc How to create the sample database including Host and AS/400 tables and views.

dbsnap.c, dbsnap.C How to capture a snapshot at the database level.

dbthrds.sqc,
dbthrds.sqC

How to use threads.

dbuse.sqc, dbuse.sqC How to use database objects.

Table Space Level - Samples that deal with the table space level of DB2.

tscreate.sqc,
tscreate.sqC

How to create and drop buffer pools and table spaces.

tsinfo.sqc,
tsinfo.sqC

How to get information at the table space level.

Table Level - Samples that deal with table objects in DB2.

tbconstr.sqc,
tbconstr.sqC

How to work with table constraints.

tbcreate.sqc,
tbcreate.sqC

How to create, alter and drop tables.

tbident.sqc How to use identity columns.

tbinfo.sqc,
tbinfo.sqC

How to get and set information at a table level.

tbmod.sqc, tbmod.sqC How to modify information in a table.

tbmove.sqc,
tbmove.sqC

How to move a table data.

tbpriv.sqc,
tbpriv.sqC

How to grant/display/revoke table level privileges.

tbread.sqc,
tbread.sqC

How to read information in a table.

tbreorg.sqc,
tbreorg.sqC

How to reorganize a table.

tbsavept.sqc How to use external savepoints.

tbtemp.sqc How to use a declared temporary table.

tbtrig.sqc,
tbtrig.sqC

How to use a trigger on a table.

Data Type Level - Samples that deal with data types.

dtformat.sqc How to use load and import data format extensions.

Chapter 3. Sample Programs and Related Files 71



Table 5. C/C++ Sample Program Files (continued)

Sample Program
Name

Program Description

dtlob.sqc, dtlob.sqC How to read and write LOB data.

dtstruct.sqC How to create, use, and drop a hierarchy of structured types and typed tables.

dtudt.sqc, dtudt.sqC How to create, use, and drop user-defined distinct types.

DB2 Function Level

fnuse.sqc, fnuse.sqC How to use SQL functions.

Stored Procedure Level - Samples that demonstrate stored procedures.

spcat Stored procedure catalog script for the spserver program. This script calls
spdrop.db2 and spcreate.db2.

spcreate.db2 CLP script to issue CREATE PROCEDURE statements.

spdrop.db2 CLP script to drop stored procedures from the catalog.

spclient.sqc,
spclient.sqC

Client program used to call the server routines declared in spserver.sqc,
spserver.sqC.

spserver.sqc,
spserver.sqC

Stored procedure routines built and run on the server.

UDF Level - Samples that demonstrate user-defined functions.

udfcli.sqc,
udfcli.sqC

Client application which calls the user-defined function in udfsrv.c, udfsrv.C.

udfsrv.c, udfsrv.C User-defined function ScalarUDF called by udfcli.sqc, udfcli.sqC.

udfemcli.sqc,
udfemcli.sqC

Client application which calls the embedded SQL user defined function library
udfemsrv.

udfemsrv.sqc,
udfemsrv.sqC

Embedded SQL User-defined function library called by udfemcli.

Other

utilsnap.c,
utilsnap.C

Utilities for the snapshot monitor samples.

Related concepts:

v “Sample Files” on page 57
v “Sample Programs: Structure and Design” on page 62

DB2 CLI Samples

Table 6. Sample CLI Program Files

Sample Program
Name

Program Description

Tutorial Samples - Programs that demonstrate basic database operations.

72 Building and Running Applications



Table 6. Sample CLI Program Files (continued)

Sample Program
Name

Program Description

tut_mod.c How to modify table data.

tut_read.c How to read tables.

tut_use.c How to use a database.

Installation Image Level - Samples that deal with the installation image level of DB2 and CLI.

ilinfo.c How to get and set installation level information (such as the version of the CLI
driver).

Client Level - Samples that deal with the client level of DB2.

cli_info.c How to get and set client level information.

clihandl.c How to allocate and free handles.

clisqlca.c How to work with SQLCA data.

Instance Level - Samples that deal with the instance level of DB2.

ininfo.c How to get and set instance level information.

Database Level - Samples that deal with database objects in DB2.

dbcongui.c How to connect to a database with a Graphical User Interface (GUI).

dbconn.c How to connect and disconnect from a database.

dbinfo.c How to get and set information at a database level.

dbmcon.c How to connect and disconnect from multiple databases.

dbmconx.c How to connect and disconnect from multiple databases with embedded SQL.

dbmconx1.h Header file for dbmconx1.sqc.

dbmconx1.sqc Embedded SQL file for the dbmconx program.

dbmconx2.h Header file for dbmconx2.sqc.

dbmconx2.sqc Embedded SQL file for the dbmconx program.

dbnative.c How to translate a statement that contains an ODBC escape clause to a data
source specific format.

dbuse.c How to use database objects.

dbusemx.sqc How to use database objects with embedded SQL.

Table Level - Samples that deal with table objects in DB2.

tbconstr.c How to work with table constraints.

tbcreate.c How to create, alter, and drop tables.

tbinfo.c How to get and set information at a table level.

tbmod.c How to modify information in a table.

tbread.c How to read information in a table.

Chapter 3. Sample Programs and Related Files 73



Table 6. Sample CLI Program Files (continued)

Sample Program
Name

Program Description

Data Type Level - Samples that deal with data types.

dtinfo.c How to get information about data types.

dtlob.c How to read and write LOB data.

dtudt.c How to create, use, and drop user defined distinct types.

Stored Procedure Level - Samples that demonstrate stored procedures.

spcat Stored procedure catalog script for the spserver program. This script calls
spdrop.db2 and spcreate.db2.

spcreate.db2 CLP script to issue CREATE PROCEDURE statements.

spdrop.db2 CLP script to drop stored procedures from the catalog.

spclient.c Client program used to call the server functions declared in spserver.c.

spserver.c Stored procedure functions built and run on the server.

spclires.c Client application that demonstrates the difference between SQLMoreResults and
SQLNextResults for multiple result sets.

spcall.c Client program for calling any stored procedure.

UDF Level - Samples that demonstrate user defined functions.

udfcli.c Client application which calls the user defined function in udfsrv.c.

udfsrv.c User defined function ScalarUDF called by udfcli.c.

Common Utility Files

utilcli.c Utility functions used in CLI samples.

utilcli.h Header file for utility functions used in CLI samples.

Related concepts:

v “Sample Files” on page 57
v “Sample Programs: Structure and Design” on page 62

JDBC Samples

Table 7. Sample JDBC Program Files

Sample Program
Name

Program Description

Tutorial Samples - Programs that demonstrate basic database operations.

TutMod.java How to modify table data.

TutRead.java How to read tables.

Installation Image Level - Samples that deal with the installation image level of DB2.

74 Building and Running Applications



Table 7. Sample JDBC Program Files (continued)

Sample Program
Name

Program Description

IlInfo.java How to get and set installation level information.

Database Level - Samples that deal with database objects in DB2.

DbAuth.java How to grant/display/revoke authorities at the database level.

DbConn.java How to connect and disconnect from a database.

DbInfo.java How to get and set information at a database level.

DbMCon.java How to connect and disconnect from multiple databases.

DbNative.java How to translate a statement that contains an ODBC escape clause to a data
source specific format.

DbSeq.java How to create, alter and drop a sequence in a database.

DbUse.java How to use database objects.

Table Level - Samples that deal with table objects in DB2.

TbConstr.java How to work with table constraints.

TbCreate.java How to create, alter and drop tables.

TbGenCol.java How to use generated columns.

TbIdent.java How to use Identity Columns.

TbInfo.java How to get and set information at a table level.

TbMod.java How to modify information in a table.

TbPriv.java How to grant/display/revoke table level privileges.

TbRead.java How to read information in a table.

TbTemp.java How to use Declared Temporary Tables.

TbTrig.java How to use a trigger on a table.

Data Type Level - Samples that deal with data types.

DtInfo.java How to get information about data types.

DtLob.java How to read and write LOB data.

DtUdt.java How to create, use, and drop user-defined distinct types.

Applets - Samples that demonstrate applets.

Applt.java How to use applets.

Stored Procedures - Samples that demonstrate stored procedures.

spcat Stored procedure catalog script for the spserver program. This script calls
SpDrop.db2 and SpCreate.db2.

SpCreate.db2 CLP script to issue CREATE PROCEDURE statements.

SpDrop.db2 CLP script to drop stored procedures from the catalog.

Chapter 3. Sample Programs and Related Files 75



Table 7. Sample JDBC Program Files (continued)

Sample Program
Name

Program Description

SpClient.java Client program used to call the server functions declared in SpServer.java.

SpServer.java Stored procedure functions built and run on the server.

UDFs - Samples that demonstrate user-defined functions.

UDFcli.java Client application which calls the user-defined function library UDFsrv.

UDFsrv.java User-defined functions called by UDFcli.java.

udfcat UDF catalog script for the UDFsrv program. This script calls UDFDrop.db2 and
UDFCreate.db2.

UDFDrop.db2 CLP script to drop UDFs from the catalog.

UDFCreate.db2 CLP script to issue CREATE PROCEDURE statements.

UDFjcli.java Client application which calls the user-defined function library UDFjsrv.

UDFjsrv.java User-defined functions called by UDFjcli.java.

udfjcat UDF catalog script for the UDFjsrv program. This script calls UDFjDrop.db2 and
UDFjCreate.db2.

UDFjDrop.db2 CLP script to drop UDFs from the catalog.

UDFjCreate.db2 CLP script to issue CREATE PROCEDURE statements.

UDFsCreate.db2 How to catalog the UDFs contained in UDFsqlsv.java

UDFsDrop.db2 How to uncatalog the UDFs contained in UDFsqlsv.java

UDFsqlcl.java Call the UDFs in UDFsqlsv.java

UDFsqlsv.java User-Defined Functions with SQL statements called by UDFsqlcl.java

Java Beans - Samples that demonstrate Java Bean classes.

CreateEmployee.java How to create an employee record.

GeneratePayroll.java How to generate payroll reports by department.

Related concepts:

v “Java Sample Programs” on page 107
v “Sample Files” on page 57
v “Sample Programs: Structure and Design” on page 62

Related reference:

v “SQLJ Samples” on page 77
v “Java WebSphere Samples” on page 79
v “Java Plugin Samples” on page 79

76 Building and Running Applications



SQLJ Samples

Table 8. Sample SQLJ Program Files

Sample Program
Name

Program Description

Tutorial Samples - Programs that demonstrate basic database operations.

TutMod.sqlj How to modify table data.

TutRead.sqlj How to read tables.

Database Level - Samples that deal with database objects in DB2.

DbAuth.sqlj How to grant/display/revoke authorities at the database level.

DbConn.sqlj How to connect and disconnect from a database.

DbMCon.java How to connect and disconnect from multiple databases.

DbMCon1.sqlj Support file for DbMCon.java.

DbMCon2.sqlj Support file for DbMCon.java.

DbUse.sqlj How to use database objects.

Table Level - Samples that deal with table objects in DB2.

TbConstr.sqlj How to work with table constraints.

TbCreate.sqlj How to create, alter and drop tables.

TbIdent.sqlj How to use identity columns.

TbInfo.sqlj How to get and set information at a table level.

TbMod.sqlj How to modify information in a table.

TbPriv.sqlj How to grant/display/revoke table level privileges.

TbRead.sqlj How to read information in a table.

TbTrig.sqlj How to use a trigger on a table.

Data Type Level - Samples that deal with data types.

DtUdt.sqlj How to create, use, and drop user-defined distinct types.

Applet Level - Samples that demonstrate applets.

Applt.sqlj How to use applets.

Stored Procedure Level - Samples that demonstrate stored procedures.

spcat Stored procedure catalog script for the SpServer program. This script calls
SpDrop.db2 and SpCreate.db2.

SpCreate.db2 CLP script to issue CREATE PROCEDURE statements.

SpDrop.db2 CLP script to drop stored procedures from the catalog.

SpClient.sqlj Client program used to call the server functions declared in SpServer.sqlj.

SpServer.sqlj Stored procedure functions built and run on the server.

SpIterat.sqlj Iterator class file for SpServer.sqlj.

Chapter 3. Sample Programs and Related Files 77



Table 8. Sample SQLJ Program Files (continued)

Sample Program
Name

Program Description

UDF Level - Samples that demonstrate user-defined functions.

UDFcli.sqlj Client application which calls the user-defined function library UDFsrv.

UDFsrv.java User-defined functions called by UDFcli.

udfcat UDF catalog script for the UDFsrv program. This script calls UDFDrop.db2 and
UDFCreate.db2.

UDFDrop.db2 CLP script to drop UDFs from the catalog.

UDFCreate.db2 CLP script to issue CREATE PROCEDURE statements.

UDFjcli.sqlj Client application which calls the user-defined function library UDFjsrv.

UDFjsrv.java User-defined functions called by UDFjcli.

udfjcat UDF catalog script for the UDFjsrv program. This script calls UDFjDrop.db2 and
UDFjCreate.db2.

UDFjDrop.db2 CLP script to drop UDFs from the catalog.

UDFjCreate.db2 CLP script to issue CREATE PROCEDURE statements.

Java Beans - Samples that demonstrate Java Bean classes.

CreateEmployee.sqlj How to create an employee record.

GeneratePayroll.sqlj How to generate payroll reports by department.

Related concepts:

v “Java Sample Programs” on page 107
v “Sample Files” on page 57
v “Sample Programs: Structure and Design” on page 62

Related reference:

v “JDBC Samples” on page 74
v “Java WebSphere Samples” on page 79
v “Java Plugin Samples” on page 79

78 Building and Running Applications



Java WebSphere Samples

Table 9. Java WebSphere Sample Files

Sample Program
Name

Program Description

AccessEmployee.ear This Enterprise ARchive (.EAR) file consists of four modules containing 32
different .class, .JSP and .HTML files. This EAR file, easily deployed using IBM
WebSphere Application Server, demonstrates how Java clients can interact with
Enterprise Java Beans (EJBs) to access data stored in DB2. The
AccessEmployee.ear file is located in the samples/java/WebSphere directory.

Related concepts:

v “Java Sample Programs” on page 107
v “Sample Files” on page 57
v “Sample Programs: Structure and Design” on page 62

Related reference:

v “JDBC Samples” on page 74
v “SQLJ Samples” on page 77
v “Java Plugin Samples” on page 79

Java Plugin Samples

Table 10. Java Control Center Plugin Sample Files

Sample Program
Name

Program Description

Example1.java How to add a new toolbar button to the Control Center toolbar.

Example2.java How to add new menu actions to Control Center Database objects.

Example3.java How to add new objects under Database objects in the Control Center tree.

Example3Folder.java How to add new objects under Database objects in the Control Center tree.

Example4.java How to remove the Configure menu items for Database and Instance objects.

Example5.java How to remove Alter actions from Tables.

Example6.java How to disable Database Configuration default buttons.

Related concepts:

v “Introducing the plug-in architecture for the Control Center” in the
Administration Guide: Implementation

v “Control Center plug-in performance considerations” in the Administration
Guide: Implementation

Chapter 3. Sample Programs and Related Files 79



v “Compiling and running the example plugins” in the Administration Guide:
Implementation

v “Java Sample Programs” on page 107
v “Sample Files” on page 57
v “Sample Programs: Structure and Design” on page 62
v “Writing plugins as Control Center extensions” in the Administration Guide:

Implementation

Related tasks:

v “Creating a plugin that adds a toolbar button” in the Administration Guide:
Implementation

v “Setting attributes for a plugin tree object” in the Administration Guide:
Implementation

Related reference:

v “JDBC Samples” on page 74
v “SQLJ Samples” on page 77
v “Java WebSphere Samples” on page 79

COBOL Samples

Note: The COBOL samples are not structured in the DB2 level design used
for the C, CLI, C++, and Java samples.

Table 11. COBOL DB2 API Sample Programs with No Embedded SQL

Sample Program Included APIs

checkerr.cbl v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

client.cbl v sqleqryc - Query Client

v sqlesetc - Set Client

d_dbconf.cbl v sqleatin - Attach

v sqledtin - Detach

v sqlfddb - Get Database Configuration Defaults

d_dbmcon.cbl v sqleatin - Attach

v sqledtin - Detach

v sqlfdsys - Get Database Manager Configuration Defaults

db_udcs.cbl v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

80 Building and Running Applications



Table 11. COBOL DB2 API Sample Programs with No Embedded SQL (continued)

Sample Program Included APIs

dbcat.cbl v sqlecadb - Catalog Database

v sqledcls - Close Database Directory Scan

v sqledgne - Get Next Database Directory Entry

v sqledosd - Open Database Directory Scan

v sqleuncd - Uncatalog Database

dbcmt.cbl v sqledcgd - Change Database Comment

v sqledcls - Close Database Directory Scan

v sqledgne - Get Next Database Directory Entry

v sqledosd - Open Database Directory Scan

v sqleisig - Install Signal Handler

dbconf.cbl v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

v sqlfrdb - Reset Database Configuration

v sqlfudb - Update Database Configuration

v sqlfxdb - Get Database Configuration

dbinst.cbl v sqleatcp - Attach and Change Password

v sqleatin - Attach

v sqledtin - Detach

v sqlegins - Get Instance

dbmconf.cbl v sqleatin - Attach

v sqledtin - Detach

v sqlfrsys - Reset Database Manager Configuration

v sqlfusys - Update Database Manager Configuration

v sqlfxsys - Get Database Manager Configuration

dbsnap.cbl v sqleatin - Attach

v sqlmonss - Get Snapshot

dbstart.cbl v sqlepstart - Start Database Manager

dbstop.cbl v sqlefrce - Force Application

v sqlepstp - Stop Database Manager

Chapter 3. Sample Programs and Related Files 81



Table 11. COBOL DB2 API Sample Programs with No Embedded SQL (continued)

Sample Program Included APIs

dcscat.cbl v sqlegdad - Catalog DCS Database

v sqlegdcl - Close DCS Directory Scan

v sqlegdel - Uncatalog DCS Database

v sqlegdge - Get DCS Directory Entry for Database

v sqlegdgt - Get DCS Directory Entries

v sqlegdsc - Open DCS Directory Scan

ebcdicdb.cbl v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

migrate.cbl v sqlemgdb - Migrate Database

monreset.cbl v sqleatin - Attach

v sqlmrset - Reset Monitor

monsz.cbl v sqleatin - Attach

v sqlmonss - Get Snapshot

v sqlmonsz - Estimate Size Required for sqlmonss() Output
Buffer

nodecat.cbl v sqlectnd - Catalog Node

v sqlencls - Close Node Directory Scan

v sqlengne - Get Next Node Directory Entry

v sqlenops - Open Node Directory Scan

v sqleuncn - Uncatalog Node

restart.cbl v sqlerstd - Restart Database

setact.cbl v sqlesact - Set Accounting String

sws.cbl v sqleatin - Attach

v sqlmon - Get/Update Monitor Switches

Table 12. COBOL DB2 API Embedded SQL Sample Programs

Sample Program Included APIs

dbauth.sqb v sqluadau - Get Authorizations

dbstat.sqb v db2Reorg - Reorganize Table

v db2Runstats - Run Statistics

expsamp.sqb v sqluexpr - Export

v sqluimpr - Import

82 Building and Running Applications



Table 12. COBOL DB2 API Embedded SQL Sample Programs (continued)

Sample Program Included APIs

impexp.sqb v sqluexpr - Export

v sqluimpr - Import

loadqry.sqb v db2LoadQuery - Load Query

rebind.sqb v sqlarbnd - Rebind

tabscont.sqb v sqlbctcq - Close Tablespace Container Query

v sqlbftcq - Fetch Tablespace Container Query

v sqlbotcq - Open Tablespace Container Query

v sqlbtcq - Tablespace Container Query

v sqlefmem - Free Memory

tabspace.sqb v sqlbctsq - Close Tablespace Query

v sqlbftpq - Fetch Tablespace Query

v sqlbgtss - Get Tablespace Statistics

v sqlbmtsq - Tablespace Query

v sqlbotsq - Open Tablespace Query

v sqlbstpq - Single Tablespace Query

v sqlefmem - Free Memory

tload.sqb v sqluexpr - Export

v sqluload - Load

v sqluvqdp - Quiesce Tablespaces for Table

tspace.sqb v sqlbctcq - Close Tablespace Container Query

v sqlbctsq - Close Tablespace Query

v sqlbftcq - Fetch Tablespace Container Query

v sqlbftpq - Fetch Tablespace Query

v sqlbgtss - Get Tablespace Statistics

v sqlbmtsq - Tablespace Query

v sqlbotcq - Open Tablespace Container Query

v sqlbotsq - Open Tablespace Query

v sqlbstpq - Single Tablespace Query

v sqlbstsc - Set Tablespace Containers

v sqlbtcq - Tablespace Container Query

v sqlefmem - Free Memory

Chapter 3. Sample Programs and Related Files 83



Table 13. COBOL Embedded SQL Sample programs with No DB2 APIs

Sample Program
Name

Program Description

advsql.sqb Demonstrates the use of advanced SQL expressions like CASE, CAST, and scalar
full selects.

cursor.sqb Demonstrates the use of a cursor using static SQL.

delet.sqb Demonstrates static SQL to delete items from a database.

dynamic.sqb Demonstrates the use of a cursor using dynamic SQL.

joinsql.sqb Demonstrates using advanced SQL join expressions.

lobeval.sqb Demonstrates the use of LOB locators and defers the evaluation of the actual LOB
data.

lobfile.sqb Demonstrates the use of LOB file handles.

lobloc.sqb Demonstrates the use of LOB locators.

openftch.sqb Demonstrates fetching, updating, and deleting rows using static SQL.

static.sqb Demonstrates static SQL to retrieve information.

tabsql.sqb Demonstrates the use of advanced SQL table expressions.

trigsql.sqb Demonstrates using advanced SQL triggers and constraints.

updat.sqb Demonstrates static SQL to update a database.

varinp.sqb Demonstrates variable input to Embedded Dynamic SQL statement calls using
parameter markers.

Related concepts:

v “Sample Files” on page 57

SQL Procedure Samples

Table 14. SQL Procedure Sample Program Files

Sample Program
Name Program Description

basecase.db2 The UPDATE_SALARY procedure raises the salary of an employee identified by
the ″empno″ IN parameter in the ″staff″ table of the ″sample″ database. The
procedure determines the raise according to a CASE statement that uses the
″rating″ IN parameter.

basecase.sqc Calls the UPDATE_SALARY procedure.

baseif.db2 The UPDATE_SALARY_IF procedure raises the salary of an employee identified by
the ″empno″ IN parameter in the ″staff″ table of the ″sample″ database. The
procedure determines the raise according to an IF statement that uses the ″rating″
IN parameter.

baseif.sqc Calls the UPDATE_SALARY_IF procedure.

84 Building and Running Applications



Table 14. SQL Procedure Sample Program Files (continued)

Sample Program
Name Program Description

dynamic.db2 The CREATE_DEPT_TABLE procedure uses dynamic DDL to create a new table.
The name of the table is based on the value of the IN parameter to the procedure.

dynamic.sqc Calls the CREATE_DEPT_TABLE procedure.

iterate.db2 The ITERATOR procedure uses a FETCH loop to retrieve data from the
″department″ table. If the value of the ″deptno″ column is not ’D11’, modified data
is inserted into the ″department″ table. If the value of the ″deptno″ column is ’D11’,
an ITERATE statement passes the flow of control back to the beginning of the
LOOP statement.

iterate.sqc Calls the ITERATOR procedure.

leave.db2 The LEAVE_LOOP procedure counts the number of FETCH operations performed
in a LOOP statement before the ″not_found″ condition handler invokes a LEAVE
statement. The LEAVE statement causes the flow of control to exit the loop and
complete the stored procedure.

leave.sqc Calls the LEAVE_LOOP procedure.

loop.db2 The LOOP_UNTIL_SPACE procedure counts the number of FETCH operations
performed in a LOOP statement until the cursor retrieves a row with a space (’ ’)
value for column ″midinit″. The loop statement causes the flow of control to exit
the loop and complete the stored procedure.

loop.sqc Calls the LOOP_UNTIL_SPACE procedure.

nestcase.db2 The BUMP_SALARY procedure uses nested CASE statements to raise the salaries
of employees in a department identified by the dept IN parameter from the ″staff″
table of the ″sample″ database.

nestcase.sqc Calls the BUMP_SALARY procedure.

nestif.db2 The BUMP_SALARY_IF procedure uses nested IF statements to raise the salaries of
employees in a department identified by the dept IN parameter from the ″staff″
table of the ″sample″ database.

nestif.sqc Calls the BUMP_SALARY_IF procedure.

nestedsp.db2 The OUT_AVERAGE, OUT_MEDIAN, and MAX_SALARY procedures return
average, median and max values from the ″staff″ table of the sample database.

NestedSP.java Calls the OUT_AVERAGE procedure.

repeat.db2 The REPEAT_STMT procedure counts the number of FETCH operations performed
in a repeat statement until the cursor can retrieve no more rows. The condition
handler causes the flow of control to exit the repeat loop and complete the stored
procedure.

repeat.sqc Calls the REPEAT_STMT procedure.

rsultset.c Calls the MEDIAN_RESULT_SET procedure, displays the median salary, then
displays the result set generated by the SQL procedure. This client is written using
the CLI API, which can accept result sets.

Chapter 3. Sample Programs and Related Files 85



Table 14. SQL Procedure Sample Program Files (continued)

Sample Program
Name Program Description

rsultset.db2 The MEDIAN_RESULT_SET procedure obtains the median salary of employees in a
department identified by the ″dept″ IN parameter from the ″staff″ table of the
″sample″ database. The median value is assigned to the salary OUT parameter and
returned to the ″rsultset″ client. The procedure then opens a WITH RETURN cursor
to return a result set of the employees with a salary greater than the median. The
procedure returns the result set to the client.

spserver.db2 The SQL procedures in this CLP script demonstrate basic error-handling, nested
stored procedure calls, and returning result sets to the client application or the
calling application. You can call the procedures using the ″spcall″ application, in the
CLI samples directory. You can also use the ″spclient″ application, in the C and
CPP samples directories, to call the procedures that do not return result sets.

whiles.db2 The DEPT_MEDIAN procedure obtains the median salary of employees in a
department identified by the ″dept″ IN parameter from the ″staff″ table of the
″sample″ database. The median value is assigned to the salary OUT parameter and
returned to the ″whiles″ client. The whiles client then prints the median salary.

whiles.sqc Calls the DEPT_MEDIAN procedure.

Related concepts:

v “Sample Files” on page 57

Visual Basic Samples

Table 15. Visual Basic ADO Sample Program Files

Sample Program
Name

Program Description

Client Level

cliExeSQL.bas How to execute SQL statements.

cli_Info.bas How to get/set client level information.

Database Level

dbConn.bas How to connect/disconnect from a database.

dbInfo.bas How to get and set information at a database level.

dbCommit.bas How to control autocommit dynamically on the database level.

Data Type Level

dtHier.bas How to retrieve hierarchical data.

dtLob.bas How to read and write LOB data.

Stored Procedures

spCall.bas How to call stored procedures.

86 Building and Running Applications



Table 15. Visual Basic ADO Sample Program Files (continued)

Sample Program
Name

Program Description

User-Defined Functions

udfUse.bas How to create and work with UDTs and UDFs.

Table 16. Visual Basic RDO and MTS Sample Program Files

Sample Program
Name Program Description

Bank.vbp An RDO program to create and maintain data for bank branches, with the ability to
perform transactions on customer accounts. The program can use any database
specified by the user as it contains the DDL to create the necessary tables for the
application to store data. The files for this program are in samples\VB\RDO.

db2com.vbp This Visual Basic project demonstrates updating a database using the Microsoft
Transaction Server. It creates a server DLL used by the client program, db2mts.vbp,
and has four class modules:

v UpdateNumberColumn.cls

v UpdateRow.cls

v UpdateStringColumn.cls

v VerifyUpdate.cls

For this program a temporary table, DB2MTS, is created in the sample database. The
files for this program are in samples\VB\MTS.

db2mts.vbp This is a Visual Basic project for a client program that uses the Microsoft
Transaction Server to call the server DLL created from db2com.vbp. The files for this
program are in samples\VB\MTS.

Related concepts:

v “Sample Files” on page 57
v “Sample Programs: Structure and Design” on page 62

Related reference:

v “Windows Management Instrumentation Samples” on page 88

Chapter 3. Sample Programs and Related Files 87



Visual C++ Samples

Table 17. Visual C++ Sample Program Files

Sample Program
Name Program Description

BLOBAccess.dsw This sample demonstrates highlighting ADO/Blob access using Microsoft Visual
C++. It is similar to the Visual Basic sample, Blob.vbp. The BLOB sample has two
main functions:

1. Read a BLOB from the Sample database and display it to the screen.

2. Read a BLOB from a file and insert it into the database. (Import)

VarCHAR.dsp A Visual C++ program that uses ADO to access VarChar data as textfields. It
provides a graphical user interface to allow users to view and update data in the
ORG table of the sample database.

Related concepts:

v “Sample Files” on page 57

Windows Management Instrumentation Samples

Table 18. Windows Management Instrumentation Sample Program Files.

Sample File
Name

File Description

backupdb.vbs How to backup a database

createdb.vbs How to create and drop a database.

listsvr.vbs How to enumerate server instances and start/stop a DB2 instance.

perfmon.mof MOF file for perfmon.vbs.

perfmon.vbs How to obtain a DB2 performance counter. Note: you must run ″mofcomp
perfmon.mof″ first.

regvar.mof MOF file for regvar.vbs.

regvar.vbs How to obtain a DB2 registry variable. Note: you must run ″mofcomp regvar.mof″
first.

restoredb.vbs How to restore a database.

rollfwddb.vbs How to rollforward a database.

updatedbcfg.vbs How to get and update the database configuration.

updatedbmcfg.vbs How to get and update the database manager configuration.

Related concepts:

v “Sample Files” on page 57
v “Windows Management Instrumentation (WMI)” on page 291

88 Building and Running Applications



Related reference:

v “Visual Basic Samples” on page 86

Object Linking and Embedding (OLE) Samples

Table 19. Object Linking and Embedding (OLE) Sample Programs

Sample Program
Name Program Description

sales Demonstrates rollup queries on a Microsoft Excel sales spreadsheet (implemented
in Visual Basic).

names Queries a Lotus Notes address book (implemented in Visual Basic).

inbox Queries Microsoft Exchange inbox e-mail messages through OLE/Messaging
(implemented in Visual Basic).

invoice An OLE automation user-defined function that sends Microsoft Word invoice
documents as e-mail attachments (implemented in Visual Basic).

bcounter An OLE automation user-defined function demonstrating a scratchpad using
instance variables (implemented in Visual Basic).

ccounter A counter OLE automation user-defined function (implemented in Visual C++).

salarysrv An OLE automation stored procedure that calculates the median salary of the
STAFF table of the sample database (implemented in Visual Basic).

salarycltvc A Visual C++ DB2 CLI sample that calls the Visual Basic stored procedure,
salarysrv.

salarycltvb A Visual Basic DB2 CLI sample that calls the Visual Basic stored procedure,
salarysrv.

salsvado An OLE automation stored procedure, implemented in 32-bit Visual Basic and
ADO, that demonstrates output parameters by calculating the median salary in
newly-created table, STAFF2, and demonstrates result sets by retrieving salaries
from the table.

salclado A Visual Basic client that calls the Visual Basic stored procedure, salsvado.

testcli An OLE automation embedded SQL client application that calls the stored
procedure, tstsrv (implemented in Visual C++).

tstsrv An OLE automation stored procedure demonstrating the passing of various types
between client and stored procedure (implemented in Visual C++).

Related concepts:

v “Sample Files” on page 57

Related reference:

v “Object Linking and Embedding Database (OLE DB) Table Function
Samples” on page 90

Chapter 3. Sample Programs and Related Files 89



Object Linking and Embedding Database (OLE DB) Table Function
Samples

Table 20. Object Linking and Embedding Database (OLE DB) Table Functions

Sample Program
Name Program Description

jet.db2 Microsoft.Jet.OLEDB.3.51 Provider

mapi.db2 INTERSOLV Connect OLE DB for MAPI

msdaora.db2 Microsoft OLE DB Provider for Oracle

msdasql.db2 Microsoft OLE DB Provider for ODBC Drivers

msidxs.db2 Microsoft OLE DB Index Server Provider

notes.db2 INTERSOLV Connect OLE DB for Notes

sampprov.db2 Microsoft OLE DB Sample Provider

sqloledb.db2 Microsoft OLE DB Provider for SQL Server

Related concepts:

v “Sample Files” on page 57

Related reference:

v “Object Linking and Embedding (OLE) Samples” on page 89

Command Line Processor (CLP) Samples

Table 21. Command Line Processor (CLP) Sample Scripts.

Sample File
Name

File Description

const.db2 Creates a table with a CHECK CONSTRAINT clause.

cte.db2 Demonstrates a common table expression.

flt.db2 Demonstrates a recursive query.

join.db2 Demonstrates an outer join of tables.

stock.db2 Demonstrates the use of triggers.

testdata.db2 Uses DB2 built-in functions such as RAND() and TRANSLATE() to populate a table
with randomly generated test data.

Related concepts:

v “Sample Files” on page 57

90 Building and Running Applications



REXX Samples

Table 22. REXX Sample Program Files.

Sample File
Name

File Description

blobfile.cmd Demonstrates Binary Large OBject (BLOB) manipulation.

chgisl.cmd Demonstrates the CHANGE ISOLATION LEVEL API.

client.cmd Demonstrates the SET CLIENT and QUERY CLIENT APIs.

d_dbconf Demonstrates the API: GET DATABASE CONFIGURATION DEFAULTS

d_dbmcon Demonstrates the API: GET DATABASE MANAGER CONFIGURATION DEFAULTS

db_udcs Demonstrates the CREATE DATABASE and DROP DATABASE APIs to simulate the
collating behavior of a DB2 for MVS/ESA CCSID 500 (EBCDIC International)
collating sequence

dbauth Demonstrates the GET AUTHORIZATIONS API

dbcat Demonstrates the following APIs:

CATALOG DATABASE
CLOSE DATABASE DIRECTORY SCAN
GET NEXT DATABASE DIRECTORY ENTRY
OPEN DATABASE DIRECTORY SCAN
UNCATALOG DATABASE

dbcmt Demonstrates the following APIs:

CHANGE DATABASE COMMENT
GET ERROR MESSAGE
INSTALL SIGNAL HANDLER

dbconf Demonstrates the following APIs:

CREATE DATABASE
DROP DATABASE
GET DATABASE CONFIGURATION
RESET DATABASE CONFIGURATION
UPDATE DATABASE CONFIGURATION

dbinst Demonstrates the following APIs:

ATTACH TO INSTANCE
DETACH FROM INSTANCE
GET INSTANCE

dbmconf Demonstrates the following APIs:

GET DATABASE MANAGER CONFIGURATION
RESET DATABASE MANAGER CONFIGURATION
UPDATE DATABASE MANAGER CONFIGURATION

dbstart Demonstrates the START DATABASE MANAGER API

dbstat Demonstrates the following APIs:

REORGANIZE TABLE
RUN STATISTICS

Chapter 3. Sample Programs and Related Files 91



Table 22. REXX Sample Program Files. (continued)

Sample File
Name

File Description

dbstop Demonstrates the following APIs:

FORCE USERS
STOP DATABASE MANAGER

dcscat Demonstrates the following APIs:

ADD DCS DIRECTORY ENTRY
CLOSE DCS DIRECTORY SCAN
GET DCS DIRECTORY ENTRY FOR DATABASE
GET DCS DIRECTORY ENTRIES
OPEN DCS DIRECTORY SCAN
UNCATALOG DCS DIRECTORY ENTRY

dynamic Demonstrates the use of a ″CURSOR″ using dynamic SQL

ebcdicdb Demonstrates the CREATE DATABASE and DROP DATABASE APIs to simulate the
collating behavior of a DB2 for MVS/ESA CCSID 037 (EBCDIC US English) collating
sequence

impexp Demonstrates the EXPORT and IMPORT APIs

lobeval Demonstrates deferring the evaluation of a LOB within a database

lobfile Demonstrates the use of LOB file handles

lobloc Demonstrates the use of LOB locators

lobval Demonstrates the use of LOBs

migrate Demonstrates the MIGRATE DATABASE API

nodecat Demonstrates the following APIs:

CATALOG NODE
CLOSE NODE DIRECTORY SCAN
GET NEXT NODE DIRECTORY ENTRY
OPEN NODE DIRECTORY SCAN
UNCATALOG NODE

quitab Demonstrates the API: QUIESCE TABLESPACES FOR TABLE

rechist Demonstrates the following APIs:

CLOSE RECOVERY HISTORY FILE SCAN
GET NEXT RECOVERY HISTORY FILE ENTRY
OPEN RECOVER HISTORY FILE SCAN
PRUNE RECOVERY HISTORY FILE ENTRY
UPDATE RECOVERY HISTORY FILE ENTRY

restart Demonstrates the RESTART DATABASE API

sqlecsrx An example of a collating sequence

updat Uses dynamic SQL to update a database

Related concepts:

92 Building and Running Applications



v “Sample Files” on page 57

Related tasks:

v “Building REXX Applications on AIX” on page 194
v “Building Object REXX Applications on Windows” on page 323

Log Management User Exit Samples

Note: Instructions for compiling the Log Management User Exit programs are
given at the top of each of the source files listed in the following table.

Table 23. Log Management User Exit Sample Program Files.

Sample File
Name

File Description

db2uext2.cadsm This is a sample User Exit utilizing Tivoli Storage Manager (TSM) APIs to archive
and retrieve database log files. The sample provides an audit trail of calls (stored in a
separate file for each option) including a timestamp and parameters received. It also
provides a trail of calls in error including a timestamp and an error isolation string
for problem determination. These options can be disabled. The file must be renamed
db2uext2.c and compiled as a C program. Available on UNIX and Windows
operating systems.
Note: Applications on AIX using the TSM API Client must be built with the xlc_r or
xlC_r compiler invocations, not with xlc or xlC, even if the applications are
single-threaded. This ensures that the libraries are thread-safe. If you have an
application that is compiled with a non-thread-safe library, you can apply fixtest
IC21925E or contact your application provider. The fixtest is available on the
index.storsys.ibm.com anonymous ftp server.

db2uext2.cdisk This is a sample User Exit utilizing the system copy command for the particular
platform on which it ships. The program archives and retrieves database log files,
and provides an audit trail of calls (stored in a separate file for each option)
including a timestamp and parameters received. It also provides an error trail of calls
in error including a timestamp and an error isolation string for problem
determination. These options can be disabled. The file must be renamed db2uext2.c
and compiled as a C program. Available on UNIX and Windows operating systems.

db2uext2.ctape This is a sample User Exit utilizing system tape commands for the particular UNIX
platform on which it ships. The program archives and retrieves database log files. All
limitations of the system tape commands are limitations of this user exit. The sample
provides an audit trail of calls (stored in a separate file for each option) including a
timestamp and parameters received. It also provides an error trail of calls in error
including a timestamp and an error isolation string for problem determination. These
options can be disabled. The file must be renamed db2uext2.c and compiled as a C
program. Available on UNIX platforms only.

Chapter 3. Sample Programs and Related Files 93



Table 23. Log Management User Exit Sample Program Files. (continued)

Sample File
Name

File Description

db2uext2.cxbsa This is a sample User Exit utilizing XBSA APIs to Archive and Retrieve database log
files. This sample provides an audit trail of calls ( stored in a separate file for each
option ) including a timestamp and parameters received. It also provides an error
trail of calls in error including a timestamp and an error isolation string for problem
determination. These options can be disabled. The file must be renamed db2uext2.c
and compiled as a C program. Available on UNIX and Windows operating systems.

Related concepts:

v “Sample Files” on page 57

Related reference:

v “Tivoli Storage Manager” in the Data Recovery and High Availability Guide
and Reference

Build Files, Makefiles, and Error-Checking Utilities

Build Files

The files used to demonstrate building sample programs are known as script
files on UNIX and batch files on Windows. We refer to them, generically, as
build files. They contain the recommended compile and link commands for
supported platform compilers.

Build files are provided by DB2 for each language on supported platforms
where the types of programs they build are available, in the same directory as
the sample programs for each language. The following table lists the different
types of build files for building different types of programs. These build files,
unless otherwise indicated, are for supported languages on all supported
platforms. The build files have the .bat (batch) extension on Windows, which
is not included in the table. There is no extension for UNIX platforms.

Table 24. DB2 Build Files

Build File Types of Programs Built

bldapp Application programs

bldrtn Routines (stored procedures and UDFs)

bldsqlj Java SQLJ applications

bldsqljs Java SQLJ routines (stored procedures and UDFs)

bldmc C/C++ multi-connection applications

bldmt UNIX C/C++ Multi-Threaded applications

94 Building and Running Applications



Table 24. DB2 Build Files (continued)

Build File Types of Programs Built

bldcli CLI client applications for SQL procedures in the sqlproc samples
sub-directory.

bldevm AIX and Windows event monitor program, evm (C language only)

Note: The bldcli file is the same as the bldapp file in the samples/cli
directory. It was given a different name because the embedded C
bldapp file is also included in the samples/sqlproc directory.

The following table lists the build files by platform and programming
language, and the directories where they are located. In the online
documentation, the build file names are hot-linked to the source files in
HTML. The user can also access the text files in the appropriate samples
directories.

Table 25. Build Files by language and Platform

Platform —>
Language

AIX HP-UX Linux Solaris Windows

C
samples/c

bldapp
bldrtn
bldmt
bldmc
bldevm

bldapp
bldrtn
bldmt
bldmc

bldapp
bldrtn
bldmt
bldmc

bldapp
bldrtn
bldmt
bldmc

bldapp.bat
bldrtn.bat
bldmc.bat
bldevm.bat

C++
samples/cpp

bldapp
bldrtn
bldmt
bldmc

bldapp
bldrtn
bldmt
bldmc

bldapp
bldrtn
bldmt
bldmc

bldapp
bldrtn
bldmt
bldmc

bldapp.bat
bldrtn.bat
bldmc.bat

CLI
samples/cli

bldapp
bldrtn
bldmc

bldapp
bldrtn
bldmc

bldapp
bldrtn
bldmc

bldapp
bldrtn
bldmc

bldapp.bat
bldrtn.bat
bldmc.bat

SQLJ
samples/java/sqlj

bldsqlj
bldsqljs

bldsqlj
bldsqljs

bldsqlj
bldsqljs

bldsqlj
bldsqljs

bldsqlj.bat
bldsqljs.bat

IBM COBOL
samples/cobol

bldapp
bldrtn

n/a n/a n/a bldapp.bat
bldrtn.bat

Micro Focus COBOL
samples/cobol_mf

bldapp
bldrtn

bldapp
bldrtn

n/a bldapp
bldrtn

bldapp.bat
bldrtn.bat

The build files are used in the documentation for building applications and
routines because they demonstrate very clearly the compile and link options
that DB2 recommends for the supported compilers. There are generally many
other compile and link options available, and users are free to experiment

Chapter 3. Sample Programs and Related Files 95



with them. See your compiler documentation for all the compile and link
options provided. Besides building the sample programs, developers can also
build their own programs with the build files. The sample programs can be
used as templates that can be modified by users to assist their programming
development.

Conveniently, the build files are designed to build a source file with any file
name allowed by the compiler. This is unlike the makefiles, where the
program names are hardcoded into the file. The makefiles access the build
files for compiling and linking the programs they make. The build files use
the $1 variable on UNIX and the %1 variable on Windows operating systems
to substitute internally for the program name. Incremented numbers in these
variable names substitute for other arguments that may be required.

The build files allow for quick and easy experimentation, as each one is suited
to a specific kind of program-building, such as stand-alone applications,
routines (stored procedures and UDFs) or more specialized program types
such as multi-connection or multi-threaded programs. Each type of build file
is provided wherever the specific kind of program it is designed for is
supported by the compiler.

The object and executable files produced by a build file are automatically
overwritten each time a program is built, even if the source file is not
modified. This is not the case when using a makefile. It means a developer
can rebuild an existing program without having to delete previous object and
executable files, or modifying the source.

The build files contain a default setting for the sample database. If the user is
accessing another database, he or she can simply supply another parameter to
overwrite the default. If they are using the other database consistently, they
may wish to hardcode this database name, replacing sample, within the build
file itself.

The build files used for embedded SQL programs call another file, embprep,
that contains the precompile and bind steps for embedded SQL programs.
These steps may require the optional parameters for user ID and password,
depending on where the embedded SQL program is being built.

Except for SQLJ, If a developer is building the program on a server instance
where the database is located, then the user ID and password will be common
to both, and therefore will not need to be provided. On the other hand, if a
developer is in a different instance, such as on a client machine accessing a
server database remotely, then these parameters would have to be provided.

96 Building and Running Applications



The SQLJ build files require user ID and password for the db2profc
customizer, even for accessing a local database. This follows the conventions
of the type 4 driver.

Finally, the build files can be modified by the developer for his or her
convenience. Besides changing the database name in the build file (explained
above) the developer can easily hardcode other parameters within the file,
change compile and link options, or change the default DB2 instance path.
The simple, straightforward, and specific nature of the build files makes
tailoring them to your needs an easy task.

Related concepts:

v “Makefiles” on page 97
v “Error-Checking Utilities” on page 101
v “Sample Files” on page 57

Related reference:

v “AIX Supported Software for Building and Running Applications” on page
9

v “HP-UX Supported Software for Building and Running Applications” on
page 11

v “Linux Supported Software for Building and Running Applications” on
page 12

v “Solaris Supported Software for Building and Running Applications” on
page 14

v “Windows Supported Software for Building and Running Applications” on
page 15

Makefiles

Each samples directory for a supported compiler includes a makefile for
building most of the supplied sample programs within the directory. The
makefile calls the build files to compile and link each program. The syntax for
the makefiles and the output from their commands differ in some important
respects from the build files. However, by using the makefile as the ’front-end’
for the build files, the user is able to exploit the makefile’s simple and
powerful commands:

make <program_name>
Compiles and links the program specified.

make all
Compiles and links all programs listed in the makefile.

Chapter 3. Sample Programs and Related Files 97



make clean
Deletes all intermediate files, such as object files, for all programs
listed in the makefile.

make cleanall
Deletes all intermediate and executable files for all programs listed in
the makefile.

Java™ does not usually use makefiles, and make executables are not shipped
with Java Development Kits (JDKs). However, DB2® provides makefiles as an
option for the Java samples, in case the user wants the convenience of the
make commands. To use the Java makefiles, you must have a make executable
available that is normally used with another language compiler.

Here are the makefiles by platform provided by DB2 for the main
programming languages/APIs, and the sample directories where they are
placed. These are hot-linked in the online documentation, and the sample
programs that they build are linked within them. These files can also be
accessed in the sample directories.

Table 26. Sample Makefiles by Platform

Platform —>
Language

AIX HP-UX Linux Solaris Windows

C
samples/c

makefile makefile makefile makefile makefile

C++
samples/cpp

makefile makefile makefile makefile makefile

CLI
samples/cli

makefile makefile makefile makefile makefile

JDBC
samples/java/jdbc

makefile makefile makefile makefile makefile

SQLJ
samples/java/sqlj

makefile makefile makefile makefile makefile

IBM COBOL
samples/cobol

makefile n/a n/a n/a makefile

Micro Focus COBOL
samples/cobol_mf

makefile makefile n/a makefile makefile

SQL Procedures
samples/sqlproc

makefile makefile makefile makefile makefile

Unlike the build files, the makefiles will not overwrite existing intermediate
and executable files for programs listed within it. This makes it faster, using
the make all command, to create executables for some of the files if other files
already have executables, as make all will just ignore these files. But it also

98 Building and Running Applications



assumes the need for the make clean and make cleanall commands, to get rid
of existing object and executable files when they are not needed.

The makefiles can be used for program development. Because they require
hardcoding the program name within the file itself, you may consider the
makefiles less convenient to use then the build files, but if you want the
power and convenience of the make commands, this is a route to consider.

The makefiles organize the programs they call under several client and server
program categories represented by variables (see the makefiles for details). If
you are adding a program to a makefile, make sure you add it to be accessed
by the correct variables. For example, a program that can run on any client
(local to the server or remote) is placed under the client_run variable.

You also need to specify the program name under the cleanall variable to be
sure that the executable produced can be deleted by the make cleanall
command. Also, if it is an embedded SQL program, specify the
non-embedded SQL file created as a result of precompilation under the clean
variable so that the make clean command (as well as the make cleanall
command which calls it) will delete the non-embedded SQL file.

In addition, you need to specify the new file with the correct syntax to call the
appropriate build file to compile and link the program.

To appreciate where a new file needs to be added to one of the sample
makefiles, here are all the places where the embedded SQL program, dbauth,
is located in the AIX® C makefile:
#****************************************************************************
# 2f - make client_run
#****************************************************************************

client_run : \
cli_info clisnap \
dbauth dbconn dbcreate dbinfo dbmcon \

. . .
#****************************************************************************
# 2g - make clean
#****************************************************************************

clean :
$(ERASE) *.o
$(ERASE) *.DEL *.TXT *.MSG
$(ERASE) dbauth.c dbcfg.c dbconn.c dbmcon.c dbmcon1.c dbmcon2.c

. . .
#****************************************************************************
# 2h - make cleanall
#****************************************************************************

cleanall : \

Chapter 3. Sample Programs and Related Files 99



clean
$(ERASE) *.bnd
$(ERASE) cli_info clisnap
$(ERASE) dbauth dbcfg dbconn dbcreate dbinfo dbmcon dbmcon1 dbmcon2

. . .
#****************************************************************************
# 3b - regular samples, embedded SQL
#****************************************************************************

dbauth :
$(BLDAPP) dbauth $(ALIAS) $(UID) $(PWD)

The three variables following the program name in the last line above, ALIAS,
UID, and PWD, represent, respectively, the database alias name, the user ID, and
the password for the database. These variables are passed to the build file (in
this case, the bldapp build file represented by the BLDAPP variable). If the
program uses embedded SQL, ALIAS, UID, and PWD are in turn passed to the
embprep precompile and bind script, which the build file calls. Before using
the makefile, you may need to change the values for these variables. By
default, ALIAS is set to the sample database, and UID and PWD have no value
set.

UID and PWD, are optional parameters that do not need to be set if the user is
already working in the same instance as the server database. However, if this
is not the case, for example, if the user is remotely connecting to the server
from a client machine, then he or she will need to modify the makefile to give
the correct values to the UID and PWD variables in order to access the database.

For multi-connection programs, the C, CLI, and C++ makefiles also have a
second database alias, ALIAS2, which by default is set to the sample2 database.
The corresponding user ID and password variables, UID2 and PWD2 have no
value set. As with the UID and PWD variables, they do not need a value if the
second database is accessed locally.

The makefiles also define an ERASE variable to delete files when the make
clean and make cleanall commands are called. On UNIX, this is set to rm -f;
on Windows® it is set to del.

Related concepts:

v “Build Files” on page 94
v “Error-Checking Utilities” on page 101
v “Sample Files” on page 57

Related reference:

v “AIX Supported Software for Building and Running Applications” on page
9

100 Building and Running Applications



v “HP-UX Supported Software for Building and Running Applications” on
page 11

v “Linux Supported Software for Building and Running Applications” on
page 12

v “Solaris Supported Software for Building and Running Applications” on
page 14

v “Windows Supported Software for Building and Running Applications” on
page 15

Error-Checking Utilities

The DB2® AD Client provides several utility files. These files have functions
for error-checking and printing out error information. Utility files are
provided for each language in the samples directory. When used with an
application program, the error-checking utility files provide helpful error
information, and make debugging a DB2 program much easier. Most of the
error-checking utilities use the DB2 APIs GET SQLSTATE MESSAGE (sqlogstt) and
GETERROR MESSAGE (sqlaintp) to obtain pertinent SQLSTATE and SQLCA
information related to problems encountered in program execution. The DB2
CLI utility file, utilcli.c, does not use these DB2 APIs; instead it uses
equivalent DB2 CLI statements. With all the error-checking utilities,
descriptive error messages are printed out to allow the developer to quickly
understand the problem.

Some DB2 programs, such as routines (stored procedures and user-defined
functions), do not need to use the utilities. They are also not necessary for
Java™ because the SQLException object will be thrown if an exception occurs.

Here are the error-checking utility files used by DB2-supported compilers for
the different programming languages:

checkerr.cbl
For IBM COBOL programs

checkerr.cbl
For Micro Focus COBOL programs

utilcli.c
For CLI programs

utilcli.h
Header file for utilcli.c

utilapi.c
For C non-embedded SQL programs

utilapi.h
Header file for utilapi.c

Chapter 3. Sample Programs and Related Files 101



utilemb.sqc
For C embedded SQL programs

utilemb.h
Header file for utilemb.sqc

utilapi.C
For C++ non-embedded SQL programs

utilapi.h
Header file for utilapi.C

utilemb.sqC
For C++ embedded SQL programs

utilemb.h
Header file for utilemb.sqC

In order to use the utility functions, the utility file must first be compiled, and
then its object file linked in during the creation of the target program’s
executable. Both the makefile and build files in the samples directories do this
for the programs that require the error-checking utilities.

The following example demonstrates how the error-checking utilities are used
in DB2 programs. The utilemb.h header file defines the EMB_SQL_CHECK macro
which is substituted for the functions SqlInfoPrint() and TransRollback():
#define EMB_SQL_CHECK( MSG_STR ) \

if( SqlInfoPrint( MSG_STR, &sqlca, __LINE__, __FILE__) != 0 ) \
TransRollback( );

SqlInfoPrint() checks the SQLCODE flag. It prints out any available
information related to the specific error indicated by this flag. It also points to
where the error occurred in the source code. TransRollback() allows the
utility file to safely rollback a transaction where an error has occurred. It
requires embedded SQL statements to connect to the database and execute a
rollback. The following is an example of how the C program dbuse calls the
utility functions by using the macro, supplying the value "Delete with host
variables -- Execute" for the MSG_STR parameter of the SqlInfoPrint()
function:

EXEC SQL DELETE FROM org
WHERE deptnumb = :hostVar1 AND

division = :hostVar2;
EMB_SQL_CHECK("Delete with host variables -- Execute");

The EMB_SQL_CHECK macro ensures that if the DELETE statement fails, the
transaction will be safely rolled back, and an appropriate error message
printed out.

102 Building and Running Applications



Developers are encouraged to use and expand upon these error-checking
utilities when creating their own DB2 programs.

Related concepts:

v “Build Files” on page 94
v “Makefiles” on page 97
v “Sample Files” on page 57

Chapter 3. Sample Programs and Related Files 103



104 Building and Running Applications



Part 2. Building and Running Platform-Independent
Applications

© Copyright IBM Corp. 1993 - 2002 105



106 Building and Running Applications



Chapter 4. Java

Java Sample Programs . . . . . . . . 107
Java Applet Considerations . . . . . . 109
JDBC . . . . . . . . . . . . . . 111

Building JDBC Applets . . . . . . . 111
Building JDBC Applications . . . . . 112
Building JDBC Routines. . . . . . . 113

SQLJ . . . . . . . . . . . . . . 116
Building SQLJ Programs . . . . . . 116
Building SQLJ Applets . . . . . . . 117
Building SQLJ Applications . . . . . 119
UNIX Build Script for SQLJ Applications
and Applets. . . . . . . . . . . 120

SQLJ Application Options for UNIX . . 122
Windows Batch File for SQLJ
Applications and Applets . . . . . . 122
SQLJ Application Options for Windows 124
Building SQLJ Routines . . . . . . . 125
UNIX Build Script for SQLJ Routines . . 126
SQLJ Stored Procedure Options for UNIX 128
Windows Batch File for SQLJ Routines 129
SQLJ Stored Procedure Options for
Windows . . . . . . . . . . . 131

This chapter provides detailed information for building Java applets and
applications. For the latest DB2 Java application development updates, visit
the Web page at:

http://www.ibm.com/software/data/db2/java

Java Sample Programs

DB2® provides sample programs to demonstrate building and running JDBC
programs that exclusively use dynamic SQL, and SQLJ programs that use
static SQL. There are separate directories for JDBC and SQLJ samples under
the java samples directory. Here is the Java samples directory structure on
UNIX® and Windows® operating systems:
v On UNIX:

sqllib/samples/java
Contains a README file for Java sample programs in all
sub-directories.

sqllib/samples/java/jdbc
Contains JDBC sample program files.

sqllib/samples/java/sqlj
Contains SQLJ sample programs.

sqllib/samples/java/Websphere
Contains Websphere sample programs.

sqllib/samples/java/plugin
Contains plugin example files for the DB2 Control Center.

© Copyright IBM Corp. 1993 - 2002 107

http://www.ibm.com/software/data/db2/java


sqllib/samples/java/plugin/doc
Contains javadoc files for the plugin interfaces.

v On Windows:

sqllib\samples\java
Contains a README file for Java sample programs in all
sub-directories.

sqllib\samples\java\jdbc
Contains JDBC sample programs.

sqllib\samples\java\sqlj
Contains SQLJ sample programs.

sqllib\samples\java\Websphere
Contains Websphere sample programs.

sqllib\samples\java\plugin
Contains plugin example files for the DB2 Control Center.

sqllib\samples\java\plugin\doc
Contains javadoc files for the plugin interfaces.

The SQLJ samples directory contains build files (scripts on UNIX, batch files
on Windows) to build the embedded SQL for Java programs. The JDBC
directory does not contain build files because building JDBC programs on the
command line using javac is so simple that build files are not needed.

Both the JDBC and SQLJ samples directories also contain optional makefiles.
Makefiles are not widely used with Java, and the Java Development Kits
(JDKs) do not ship with make executable files. DB2 supplies Java sample
makefiles in case the user wants the convenience they provide. Each Java
makefile builds all the supplied sample programs in either the JDBC or SQLJ
samples directory. You can use a make program, such as gnumake, that’s used
with another language compiler.

There are two SQLJ build files provided: bldsqlj on UNIX, or bldsqlj.bat on
Windows, which builds SQLJ applets and applications, and bldsqljs on
UNIX, or bldsqljs.bat on Windows, which builds SQLJ routines (stored
procedures and user-defined functions).

Related tasks:

v “Setting Up the Java Environment” on page 22
v “Building JDBC Applets” on page 111
v “Building JDBC Applications” on page 112
v “Building JDBC Routines” on page 113
v “Building SQLJ Applets” on page 117
v “Building SQLJ Applications” on page 119

108 Building and Running Applications



v “Building SQLJ Routines” on page 125
v “Building SQLJ Programs” on page 116

Related reference:

v “JDBC Samples” on page 74
v “SQLJ Samples” on page 77
v “Java WebSphere Samples” on page 79
v “Java Plugin Samples” on page 79

Java Applet Considerations

DB2® databases can be accessed by using Java™ applets. Please keep the
following points in mind when using them:
1. If you are using the now deprecated type 3 driver (also known as the ″net″

driver), it is essential that the db2java.zip file used by the Java applet be
at the same FixPak level as the JDBC applet server. Under normal
circumstances, db2java.zip is loaded from the Web Server where the JDBC
applet server is running. This ensures a match. If, however, your
configuration has the Java applet loading db2java.zip from a different
location, a mismatch can occur. Matching FixPak levels between the two
files is strictly enforced at connection time. If a mismatch is detected, the
connection is rejected, and the client receives one of the following
exceptions:
v If db2java.zip is at DB2 Version 7 FixPak 2 or later:

COM.ibm.db2.jdbc.DB2Exception: [IBM][JDBC Driver]
CLI0621E Unsupported JDBC server configuration.

v If db2java.zip is prior to FixPak 2:

COM.ibm.db2.jdbc.DB2Exception: [IBM][JDBC Driver]
CLI0601E Invalid statement handle or statement is closed.
SQLSTATE=S1000

If a mismatch occurs, the JDBC applet server logs one of the following
messages in the jdbcerr.log file:
v If the JDBC applet server is at DB2 Version 7 FixPak 2 or later:

jdbcFSQLConnect: JDBC Applet Server and client (db2java.zip)
versions do not match. Unable to proceed with connection., einfo= -111

v If the JDBC applet server is prior to FixPak 2:

jdbcServiceConnection(): Invalid Request Received., einfo= 0

Chapter 4. Java 109



To test your JDBC environment, you can use the sample file,
db2JDBCVersion.java, in sqllib\samples\java (Windows), or in
sqllib/samples/java (UNIX). The db2JDBCVersion program checks which
version of the DB2 JDBC driver is currently in use, and whether the JDBC
environment is correctly set up for it.

Users are strongly recommended to migrate their applets to the type 4
driver.

2. For a larger JDBC or SQLJ applet that consists of several Java classes, you
may choose to package all its classes in a single JAR file. For an SQLJ
applet, you would also have to package its serialized profiles along with
its classes. If you choose to do this, add your JAR file into the archive
parameter in the ″applet″ tag. For details, see the JDK Version 1.3
documentation.
For SQLJ applets, some browsers do not yet have support for loading a
serialized object from a resource file associated with the applet. For
example, you will get the following error message when trying to load the
supplied sample applet Applt in those browsers:

java.lang.ClassNotFoundException: Applt_SJProfile0

As a workaround, there is a utility which converts a serialized profile into
a profile stored in Java class format. The utility is a Java class called
sqlj.runtime.profile.util.SerProfileToClass. It takes a serialized
profile resource file as input and produces a Java class containing the
profile as output. Your profile can be converted using one of the following
commands:

profconv Applt_SJProfile0.ser

or
java sqlj.runtime.profile.util.SerProfileToClass Applt_SJProfile0.ser

The class Applt_SJProfile0.class is created as a result. Replace all
profiles in .ser format used by the applet with profiles in .class format,
and the problem should go away.

3. You may wish to place the file db2java.zip (and for SQLJ applets, also the
file runtime.zip) into a directory that is shared by several applets that
may be loaded from your Web site. These files are in the sqllib\java
directory on Windows® operating systems, and in the sqllib/java
directory on UNIX. You may need to add a codebase parameter into the
″applet″ tag in the HTML file to identify the directory. For details, see the
JDK Version 1.3 documentation.

4. Since DB2 Version 5.2, signal handling has been added to the JDBC applet
server (listener), db2jd, to make it more robust. As a result, one cannot use

110 Building and Running Applications



the CTRL-C command to kill db2jd. Therefore, the only way to terminate
the listener is to kill the process by using kill -9 (for Unix) or the Task
Manager (for Windows).

5. For information on running DB2 Java applets on a Web server, specifically
the Domino™ Go Webserver, visit:

http://www.ibm.com/software/data/db2/db2lotus/gojava.htm

Related tasks:

v “Setting Up the Java Environment” on page 22
v “Building JDBC Applets” on page 111
v “Building SQLJ Applets” on page 117

JDBC

Building JDBC Applets

Applt demonstrates a dynamic SQL Java applet to access a DB2 database.

Procedure:

You can use the, now deprecated, type 3 driver (also known as the ″net″
driver), or the type 4 driver. Sections for connecting with both these drivers
are presented below. It is strongly recommended that you migrate your
applets to the type 4 driver.

To build and run the JDBC applet, Applt, by commands entered at the
command line, either ensure that a web server is installed and running on
your DB2 machine (server or client), or use the applet viewer that comes with
the Java Development Kit by entering the following command in the working
directory of your client machine:

appletviewer Applt.html

Connecting with the Type 3 (″net″) Driver

To connect with the type 3 driver, first modify the Applt.html file according to
the instructions in the file. Then, start the JDBC applet server on the TCP/IP
port specified in Applt.html. For example, if in Applt.html, you specified
param name=port value=’6789’, then you would enter:

db2jstrt 6789

Make sure the JDBC port number in the connection string is the
recommended default, ″6789″. Only change this if you are sure the number
does not conflict with another port number. Do not use the database port
number, ″50000″.

Chapter 4. Java 111

http://www.ibm.com/software/data/db2/db2lotus/gojava.htm


Connecting with the Type 4 Driver

To connect with the type 4 driver, modify the Applt.html file according to the
instructions in the file, except the TCP/IP port number specified should be the
database port number, ″50000″.

Building the Applet

1. Compile Applt.java to produce the file Applt.class with this command:
javac Applt.java

2. Ensure that your working directory is accessible by your web browser. If it
is not, copy Applt.class and Applt.html into a directory that is accessible.

3. If using a type 3 driver, copy sqllib\java\db2java.zip on Windows, or
sqllib/java/db2java.zip on UNIX, into the same directory as
Applt.class and Applt.html.
If using a type 4 driver, copy sqllib\java\db2jcc.jar on Windows or
sqllib/java/db2jcc.jar on UNIX, into the same directory as Applt.class
and Applt.html.

4. On your client machine, start your web browser (which must support Java
1.3) and load Applt.html.

You can also use the Java makefile to build this program.

Related concepts:

v “Java Applet Considerations” on page 109

Related tasks:

v “Building JDBC Applications” on page 112
v “Building JDBC Routines” on page 113
v “Building SQLJ Applets” on page 117

Related reference:

v “JDBC Samples” on page 74

Related samples:

v “Applt.java -- A Java applet that use JDBC applet driver to access a
database (JDBC)”

Building JDBC Applications

DbInfo demonstrates a dynamic SQL Java application accessing a DB2
database.

Procedure:

112 Building and Running Applications



To build and run this application by commands entered at the command line:
1. Compile DbInfo.java to produce the file DbInfo.class with this command:

javac DbInfo.java

2. Run the java interpreter on the application with this command:
java DbInfo

You can also use the Java makefile to build this program.

Note: If you are running a Java application on Unix in a 64-bit DB2 instance
but the JDK is 32-bit, you must change the DB2 library path before
running the application. For example on AIX:
v If using bash or Korn shell:

export LIBPATH=$HOME/sqllib/lib32

v If using C shell:
setenv LIBPATH $HOME/sqllib/lib32

Related tasks:

v “Building JDBC Applets” on page 111
v “Building JDBC Routines” on page 113
v “Building SQLJ Applications” on page 119

Related reference:

v “JDBC Samples” on page 74

Related samples:

v “DbInfo.java -- How to get/set info in a database (JDBC)”

Building JDBC Routines

DB2 provides sample programs demonstrating JDBC routines (stored
procedures and user-defined functions) in the samples/java/jdbc directory on
UNIX, and the samples\java\jdbc directory on Windows. Routines are
compiled and stored on a server. When called by a client application, they
access the server database and return information to the client application.

Procedure:

The following examples show you how to build routines comprising:
v stored procedures
v user-defined functions without SQL statements
v user-defined functions with SQL statements

Stored Procedures

Chapter 4. Java 113



Spserver demonstrates dynamic SQL PARAMETER STYLE JAVA stored
procedures.

To build and run this program on the server from the command line:
1. Compile Spserver.java to produce the file Spserver.class with this

command:
javac Spserver.java

2. Copy Spserver.class to the sqllib\function directory on Windows
operating systems, or to the sqllib/function directory on UNIX.

3. Next, catalog the routines by running the spcat script on the server. Enter:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling Spdrop.db2, then catalogs them by
calling Spcreate.db2, and finally disconnects from the database. You can
also run the Spdrop.db2 and Spcreate.db2 scripts individually.

4. Then, stop and restart the database to allow the new class file to be
recognized. If necessary, set the file mode for the class file to ″read″ so it is
readable by the fenced user.

5. Compile and run the Spclient client application to access the stored
procedure class.

User-Defined Functions without SQL Statements

UDFsrv is a user-defined function library that does not contain SQL statements.
DB2 provides both a JDBC client application, UDFcli, and an SQLJ client
application, UDFcli, that can access the UDFsrv library.

To build and run the UDF program on the server from the command line:
1. Compile UDFsrv.java to produce the file UDFsrv.class with this command:

javac UDFsrv.java

2. Copy UDFsrv.class to the sqllib\function directory on Windows
operating systems, or to the sqllib/function directory on UNIX.

3. To access the UDFsrv library, you can use either JDBC or SQLJ client
applications. Both versions of the client program contain the CREATE
FUNCTION SQL statement that you use to register the UDFs contained in
UDFsrv with the database, and also contain SQL statements that make use
of the UDFs, once they have been registered.

User-Defined Functions with SQL Statements

UDFsqlsv is a user-defined function library that contains SQL statements. DB2
provides a JDBC client application, UDFsqlcl, to access the UDFsqlsv library.

114 Building and Running Applications



To build and run the UDF program on the server from the command line:
1. Compile UDFsqlsv.java to produce the file UDFsqlsv.class with this

command:
javac UDFsqlsv.java

2. Copy UDFsqlsv.class to the sqllib\function directory on Windows
operating systems, or to the sqllib/function directory on UNIX.

3. To access the UDFsqlsv library, use the client program, UDFsqlcl, which
contains the CREATE FUNCTION SQL statement that you use to register the
UDFs contained in UDFsqlsv with the database. The client program also
contains SQL statements that make use of the UDFs, once they have been
registered.

You can also use the Java makefile to build the above programs.

Related tasks:

v “Building JDBC Applets” on page 111
v “Building JDBC Applications” on page 112
v “Building SQLJ Routines” on page 125

Related reference:

v “JDBC Samples” on page 74

Related samples:

v “spcat -- To catalog SQLj stored procedures on UNIX”
v “SpClient.java -- Call a variety of types of stored procedures from

SpServer.java (JDBC)”
v “SpCreate.db2 -- How to catalog the stored procedures contained in

SpServer.java ”
v “SpDrop.db2 -- How to uncatalog the stored procedures contained in

SpServer.java”
v “SpServer.java -- Provide a variety of types of stored procedures to be

called from (JDBC)”
v “UDFcli.java -- Call the UDFs in UDFsrv.java (JDBC)”
v “UDFCreate.db2 -- How to catalog the Java UDFs contained in UDFsrv.java

”
v “UDFDrop.db2 -- How to uncatalog the Java UDFs contained in

UDFsrv.java ”
v “UDFsCreate.db2 -- How to catalog the UDFs contained in UDFsqlsv.java ”
v “UDFsDrop.db2 -- How to uncatalog the UDFs contained in UDFsqlsv.java

”
v “UDFsqlcl.java -- Call the UDFs in UDFsqlsv.java (JDBC)”

Chapter 4. Java 115



v “UDFsqlsv.java -- Provide UDFs to be called by UDFsqlcl.java (JDBC)”
v “UDFsrv.java -- Provide UDFs to be called by UDFcli.java (JDBC)”

SQLJ

Building SQLJ Programs

DB2 supplies build files to build the SQLJ sample programs. For applets and
applications, you can use the bldsqlj script on UNIX or the bldsqlj.bat
batch file on Windows. For routines (stored procedures and user-defined
functions), you can use the bldsqljs script on UNIX, or the bldsqljs.bat
batch file on Windows.

The SQLJ translator shipped with DB2 compiles the translated .java files into
.class files. Therefore, the build files do not use the java compiler.

Note: In previous versions of DB2, the db2profc command used a URL of the
form -url=jdbc:db2:dbname where dbname was the locally cataloged
database alias. The new format follows the conventions for the DB2
type 4 JDBC driver: -url=jdbc:db2://hostname:portnumber/dbname
where hostname is the name of the DB2 server, portnumber is the
TCP/IP listener port number of the DB2 server and dbname is the
database alias cataloged on the DB2 Server. This means the DB2 Server
must be configured for TCP/IP connections.

Procedure:

To build and run SQLJ programs with the IBM Java Development Kit for
UNIX and Windows operating systems, you must turn off the JDK’s
just-in-time compiler with the following command for your operating system:

UNIX: For bash or Korn shell:
export JAVA_COMPILER=NONE

For C shell:
setenv JAVA_COMPILER NONE

Windows:
SET JAVA_COMPILER=NONE

To build the different types of DB2 SQLJ programs, see the following:
v Building SQLJ Applets
v Building SQLJ Applications
v Building SQLJ Routines

116 Building and Running Applications



Related concepts:

v “Java Sample Programs” on page 107
v “Java Applet Considerations” on page 109

Related tasks:

v “Building SQLJ Applets” on page 117
v “Building SQLJ Applications” on page 119
v “Building SQLJ Routines” on page 125

Related reference:

v “SQLJ Samples” on page 77

Building SQLJ Applets

The following steps show how to build the Applt sample that demonstrates
an SQLJ applet accessing a DB2 database. These steps use the build file,
bldsqlj (UNIX), or bldsqlj.bat (Windows), which contains commands to
build either an SQLJ applet or application.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX,
and %1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies
the name of your program. The second parameter specifies the user ID for the
database instance, the third parameter specifies the password. The fourth
parameter specifies the server name. The fifth parameter specifies the port
number. And the sixth parameter specifies the database name. For all but the
first parameter, program name, default values can be used. See the build file
for details about using default parameter values.

Procedure:

You can use the, now deprecated, type 3 driver (also known as the ″net″
driver), or the type 4 driver. Sections for connecting with both these drivers
are presented below. It is strongly recommended that you migrate your
applets to the type 4 driver.

To run this applet, either ensure that a web server is installed and running on
your DB2 machine (server or client), or you can use the applet viewer that
comes with the Java Development Kit by entering the following command in
the working directory of your client machine:

appletviewer Applt.html

Connecting with the Type 3 (″net″) Driver

To connect with the type 3 driver, first modify the Applt.html file according to
the instructions in the file. Then, start the JDBC applet server on the TCP/IP

Chapter 4. Java 117



port specified in Applt.html. For example, if in Applt.html, you specified
param name=port value=’6789’, then you would enter:

db2jstrt 6789

Make sure the JDBC port number in the connection string is the
recommended default, ″6789″. Only change this if you are sure the number
does not conflict with another port number. Do not use the database port
number, ″50000″.

Connecting with the Type 4 Driver

To connect with the type 4 driver, modify the Applt.html file according to the
instructions in the file, except the TCP/IP port number specified should be the
database port number, ″50000″.

Building the Applet

1. Build the applet with this command:
bldsqlj Applt <userid> <password> <server_name> <port_number> <db_name>

where all parameters except the program name can have default values, as
explained in the build file.

2. Ensure that your working directory is accessible by your web browser, or
by appletviewer if you are using it. If your directory is not accessible, copy
the following files into a directory that is accessible:

Applt.html Applt.class
Applt_Cursor1.class Applt_Cursor2.class
Applt_SJProfileKeys.class Applt_SJProfile0.ser

3. If using a type 3 driver, copy sqllib\java\runtime.zip and
sqllib\java\db2java.zip on Windows, or sqllib/java/runtime.zip and
sqllib/java/db2java.zip on UNIX, into the same directory as
Applt.class and Applt.html.
If using a type 4 driver, copy sqllib\java\runtime.zip and
sqllib\java\db2jcc.jar on Windows or sqllib/java/runtime.zip and
sqllib/java/db2jcc.jar on UNIX, into the same directory as Applt.class
and Applt.html.

4. On your client machine, start your web browser (which must support JDK
1.3), or appletviewer, and load Applt.html.

You can also use the Java makefile to build this program.

Related concepts:

v “Java Applet Considerations” on page 109

Related tasks:

118 Building and Running Applications



v “Building JDBC Applets” on page 111
v “Building SQLJ Applications” on page 119
v “Building SQLJ Routines” on page 125

Related reference:

v “SQLJ Application Options for UNIX” on page 121
v “SQLJ Application Options for Windows” on page 124
v “SQLJ Samples” on page 77

Related samples:

v “Applt.sqlj -- An SQLJ applet that uses a JDBC applet driver to access a
database (SQLj)”

v “bldsqlj.bat -- Builds a Java embedded SQL (SQLJ) application or applet on
Windows”

v “bldsqlj -- Builds Java embedded SQL (SQLJ) applications and applets on
UNIX”

Building SQLJ Applications

The following steps show how to build the TbMod sample that demonstrates
an SQLJ application accessing a DB2 database. These steps use the build file,
bldsqlj (UNIX), or bldsqlj.bat (Windows), which contains commands to
build either an SQLJ applet or application.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX,
and %1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies
the name of your program. The second parameter specifies the user ID for the
database instance, the third parameter specifies the password. The fourth
parameter specifies the server name. The fifth parameter specifies the port
number. And the sixth parameter specifies the database name. For all but the
first parameter, program name, default values can be used. See the build file
for details about using default parameter values.

Procedure:

To build TbMod with the build file, bldsqlj (UNIX) or bldsqlj.bat (Windows),
enter this command:

bldsqlj TbMod <userid> <password> <server_name> <port_number> <db_name>

where all parameters except the program name can have default values, as
explained in the build file.

Run the Java interpreter on the application with this command:
java TbMod

Chapter 4. Java 119



You can also use the Java makefile to build this program.

Note: If you are running a Java application on Unix in a 64-bit DB2 instance
but the JDK is 32-bit, you must change the DB2 library path before
running the application. For example on AIX:
v If using bash or Korn shell:

export LIBPATH=$HOME/sqllib/lib32

v If using C shell:
setenv LIBPATH $HOME/sqllib/lib32

Related tasks:

v “Building JDBC Applications” on page 112
v “Building SQLJ Applets” on page 117
v “Building SQLJ Routines” on page 125

Related reference:

v “SQLJ Application Options for UNIX” on page 121
v “SQLJ Application Options for Windows” on page 124
v “SQLJ Samples” on page 77

Related samples:

v “bldsqlj.bat -- Builds a Java embedded SQL (SQLJ) application or applet on
Windows”

v “bldsqlj -- Builds Java embedded SQL (SQLJ) applications and applets on
UNIX”

v “TbMod.sqlj -- How to modify table data (SQLj)”

UNIX Build Script for SQLJ Applications and Applets
#! /bin/sh
# SCRIPT: bldsqlj
# Builds UNIX Java embedded SQL (SQLJ) applications
# Usage: bldsqlj prog_name (requires hardcoding user ID and password)
# bldsqlj prog_name userid password
# bldsqlj prog_name userid password server_name
# bldsqlj prog_name userid password server_name port_number
# bldsqlj prog_name userid password server_name port_number db_name
#
# Defaults:
# userid = $USER variable
# password = $PSWD variable
# server_name = local hostname
# port_number = 50000
# db_name = sample

# To add defaults for user ID (USER) and password (PSWD)
# Uncomment the following and add the values in the quotes

120 Building and Running Applications



# USER=""
# PSWD=""

# Translate and compile the SQLJ source file
# and bind the package to the database.
if ( (( $# == 1 )) && [ $USER != "" && $PSWD != "" ] ) ||

(( $# >= 3 && $# <= 6 ))
then

sqlj $1.sqlj

if (($# == 1))
then

db2profc -url=jdbc:db2://$(hostname):50000/sample \
-user=$USER -password=$PSWD \
-prepoptions="package using $1" $1_SJProfile0

elif (($# == 3))
then

db2profc -url=jdbc:db2://$(hostname):50000/sample -user=$2 \
-password=$3 -prepoptions="package using $1" $1_SJProfile0

elif (($# == 4))
then

db2profc -url=jdbc:db2://$4:50000/sample -user=$2 -password=$3 \
-prepoptions="package using $1" $1_SJProfile0

elif (($# == 5))
then

db2profc -url=jdbc:db2://$4:$5/sample -user=$2 -password=$3 \
-prepoptions="package using $1" $1_SJProfile0

else
db2profc -url=jdbc:db2://$4:$5/$6 -user=$2 -password=$3 \

-prepoptions="package using $1" $1_SJProfile0
fi

else
echo ’Usage: bldsqlj prog_name (requires hardcoding user ID and password)’
echo ’ bldsqlj prog_name userid password’
echo ’ bldsqlj prog_name userid password server_name’
echo ’ bldsqlj prog_name userid password server_name port_number’
echo ’ bldsqlj prog_name userid password server_name port_number

db_name’
echo ’’
echo ’ Defaults:’
echo ’ userid = ’$USER
echo ’ password = ’$PSWD
echo ’ server_name = ’$(hostname)
echo ’ port_number = 50000’
echo ’ db_name = sample’

fi

SQLJ Application Options for UNIX
The following table contains the SQLJ translator and precompile options used
in the bldsqlj build script on UNIX. These are the options DB2 recommends
that you use to build SQLJ applications and applets on UNIX platforms.

Chapter 4. Java 121



Translator and Precompile Options for bldsqlj

sqlj The SQLJ translator (also compiles the program).

$1.sqlj
The SQLJ source file.

db2profc
The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as
jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password
Specifies a password.

-prepoptions
Specifies the package name for the database with the string "package using
$1", where $1 is the SQLJ source file name.

$1_SJProfile0
Specifies a serialized profile for the program.

Related tasks:

v “Building SQLJ Applets” on page 117
v “Building SQLJ Applications” on page 119

Related reference:

v “SQLJ Stored Procedure Options for UNIX” on page 128

Related samples:

v “bldsqlj -- Builds Java embedded SQL (SQLJ) applications and applets on
UNIX”

Windows Batch File for SQLJ Applications and Applets
@echo off
rem BATCH FILE: bldsqlj.bat
rem Builds Windows Java embedded SQL (SQLJ) applications and applets
rem To add defaults for user ID (USER) and password (PSWD)
rem Uncomment the following and add the appropriate values
rem set USER=
rem set PSWD=

goto start
:usage
echo Usage: bldsqlj prog_name (requires hardcoding user ID and password)
echo bldsqlj prog_name userid password
echo bldsqlj prog_name userid password server_name
echo bldsqlj prog_name userid password server_name port_number

122 Building and Running Applications



echo bldsqlj prog_name userid password server_name port_number db_name
echo.
echo Defaults:
echo userid = %USER%
echo password = %PSWD%
echo server_name = %COMPUTERNAME%
echo port_number = 50000
echo db_name = sample
goto exit

:start
rem Translate and compile the SQLJ source file
rem and bind the package to the database.
if "%1" == "" goto usage
if "%2" == "" goto case1
if "%3" == "" goto usage
if "%4" == "" goto case3
if "%5" == "" goto case4
if "%6" == "" goto case5
if "%7" == "" goto case6
goto usage

:case1
if "%USER%" == "" goto usage
if "%PSWD%" == "" goto usage
if "%COMPUTERNAME%" == "" goto nohostname
sqlj %1.sqlj
db2profc -url=jdbc:db2://%COMPUTERNAME%:50000/sample -user=%USER%

-password=%PSWD% -prepoptions="package using %1" %1_SJProfile0
goto continue

:case3
if "%COMPUTERNAME%" == "" goto nohostname
sqlj %1.sqlj
db2profc -url=jdbc:db2://%COMPUTERNAME%:50000/sample -user=%2

-password=%3 -prepoptions="package using %1" %1_SJProfile0
goto continue

:case4
sqlj %1.sqlj
db2profc -url=jdbc:db2://%4:50000/sample -user=%2 -password=%3

-prepoptions="package using %1" %1_SJProfile0
goto continue

:case5
sqlj %1.sqlj
db2profc -url=jdbc:db2://%4:%5/sample -user=%2 -password=%3

-prepoptions="package using %1" %1_SJProfile0
goto continue

:case6
sqlj %1.sqlj
db2profc -url=jdbc:db2://%4:%5/%6 -user=%2 -password=%3

-prepoptions="package using %1" %1_SJProfile0
goto continue

Chapter 4. Java 123



:continue
rem Put any post building steps here
goto exit

:nohostname
echo Local server name (hostname) could not be determined.
echo.
goto usage

:exit
@echo on

SQLJ Application Options for Windows
The following table contains the SQLJ translator and precompile options used
in the bldsqlj.bat batch file on Windows operating systems. These are the
options DB2 recommends that you use to build SQLJ routines (stored
procedures and user-defined functions).

Translator and Precompile Options for bldsqlj.bat

sqlj The SQLJ translator (also compiles the program).

%1.sqlj
The SQLJ source file.

db2profc
The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as
jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password
Specifies a password.

-prepoptions
Specifies the package name for the database with the string "package using
%1", where %1 is the SQLJ source file name.

%1_SJProfile0
Specifies a serialized profile for the program.

Related tasks:

v “Building SQLJ Applets” on page 117
v “Building SQLJ Applications” on page 119

Related reference:

v “SQLJ Stored Procedure Options for Windows” on page 130

Related samples:

124 Building and Running Applications



v “bldsqlj.bat -- Builds a Java embedded SQL (SQLJ) application or applet on
Windows”

Building SQLJ Routines

DB2 provides sample programs demonstrating SQLJ routines (stored
procedures and user-defined functions) in the samples/java/sqlj directory on
UNIX, and the samples\java\sqlj directory on Windows. Routines are
compiled and stored on a server. When called by a client application, they
access the server database and return information to the client application.

In the same directory, DB2 also supplies the build file, bldsqljs (UNIX), or
bldsqljs.bat (Windows), which contains commands to build routines.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX,
and %1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies
the name of your program. The second parameter specifies the user ID for the
database instance, the third parameter specifies the password. The fourth
parameter specifies the server name. The fifth parameter specifies the port
number. And the sixth parameter specifies the database name. For all but the
first parameter, program name, default values can be used. See the build file
for details about using default parameter values.

Procedure:

The following example shows you how to build a class file with stored
procedures.

Spserver demonstrates PARAMETER STYLE JAVA stored procedures using
the JDBC application driver to access a DB2 database.

To build this stored procedure class with the build file, bldsqljs (UNIX) or
bldsqljs.bat (Windows):
1. Enter the following command:

bldsqljs Spserver <userid> <password> <server_name> \
<port_number> <db_name>

where all parameters except the program name can have default values, as
explained in the build file.

2. Next, catalog the routines by running the spcat script on the server. Enter:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling Spdrop.db2, then catalogs them by
calling Spcreate.db2, and finally disconnects from the database. You can
also run the Spdrop.db2 and Spcreate.db2 scripts individually.

Chapter 4. Java 125



3. Then, stop and restart the database to allow the new class file to be
recognized. If necessary, set the file mode for the class file to ″read″ so it is
readable by the fenced user.

4. Build and run the Spclient client application to call the stored procedures.
You can build Spclient with the application build file, bldsqlj (UNIX) or
bldsqlj.bat (Windows).

You can also use the Java makefile to build the above programs.

Related tasks:

v “Building JDBC Routines” on page 113
v “Building SQLJ Applets” on page 117
v “Building SQLJ Applications” on page 119

Related reference:

v “SQLJ Stored Procedure Options for UNIX” on page 128
v “SQLJ Stored Procedure Options for Windows” on page 130
v “SQLJ Samples” on page 77

Related samples:

v “bldsqljs.bat -- Builds a Java embedded SQL (SQLJ) stored procedure on
Windows”

v “bldsqljs -- Builds Java embedded SQL (SQLJ) stored procedures on UNIX”
v “spcat -- To catalog SQLj stored procedures on UNIX”
v “SpClient.sqlj -- Call a variety of types of stored procedures from

SpServer.sqlj (SQLj)”
v “SpCreate.db2 -- How to catalog the stored procedures contained in

SpServer.sqlj ”
v “SpDrop.db2 -- How to uncatalog the stored procedures contained in

SpServer.sqlj”
v “SpIterat.sqlj -- Iterator class file for SpServer.sqlj (SQLj)”
v “SpServer.sqlj -- Provide a variety of types of stored procedures to be called

from (SQLj)”

UNIX Build Script for SQLJ Routines
#! /bin/sh
# SCRIPT: bldsqljs
# Builds UNIX Java embedded SQL (SQLJ) routines
# Usage: bldsqljs prog_name (requires hardcoding user ID and password)
# bldsqljs prog_name userid password
# bldsqljs prog_name userid password server_name
# bldsqljs prog_name userid password server_name port_number
# bldsqljs prog_name userid password server_name port_number db_name
#

126 Building and Running Applications



# Defaults:
# userid = $USER variable
# password = $PSWD variable
# server_name = local hostname
# port_number = 50000
# db_name = sample

# To add defaults for user ID (USER) and password (PSWD)
# Uncomment the following and add the values in the quotes
# USER=""
# PSWD=""

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# Translate and compile the SQLJ source file
# and bind the package to the database.
if ( (( $# == 1 )) && [ $USER != "" && $PSWD != "" ] ) ||

(( $# >= 3 && $# <= 6 ))
then

sqlj $1.sqlj

if (($# == 1))
then

db2profc -url=jdbc:db2://$(hostname):50000/sample \
-user=$USER -password=$PSWD \
-prepoptions="package using $1" $1_SJProfile0

elif (($# == 3))
then

db2profc -url=jdbc:db2://$(hostname):50000/sample -user=$2 \
-password=$3 -prepoptions="package using $1" $1_SJProfile0

elif (($# == 4))
then

db2profc -url=jdbc:db2://$4:50000/sample -user=$2 -password=$3 \
-prepoptions="package using $1" $1_SJProfile0

elif (($# == 5))
then

db2profc -url=jdbc:db2://$4:$5/sample -user=$2 -password=$3 \
-prepoptions="package using $1" $1_SJProfile0

else
db2profc -url=jdbc:db2://$4:$5/$6 -user=$2 -password=$3 \

-prepoptions="package using $1" $1_SJProfile0
fi

# Copy the *.class and *.ser files to the ’function’ directory.
rm -f $DB2PATH/function/$1*.class
rm -f $DB2PATH/function/$1*.ser
cp $1*.class $DB2PATH/function
cp $1*.ser $DB2PATH/function

else
echo ’Usage: bldsqljs prog_name (requires hardcoding user ID and password)’
echo ’ bldsqljs prog_name userid password’
echo ’ bldsqljs prog_name userid password server_name’

Chapter 4. Java 127



echo ’ bldsqljs prog_name userid password server_name port_number’
echo ’ bldsqljs prog_name userid password server_name port_number

db_name’
echo ’’
echo ’ Defaults:’
echo ’ userid = ’$USER
echo ’ password = ’$PSWD
echo ’ server_name = ’$(hostname)
echo ’ port_number = 50000’
echo ’ db_name = sample’

fi

SQLJ Stored Procedure Options for UNIX
The following table contains the SQLJ translator and precompile options used
in the bldsqljs build script on UNIX. These are the options DB2 recommends
that you use to build SQLJ routines (stored procedures and user-defined
functions) on UNIX platforms.

Translator and Precompile Options for bldsqljs

sqlj The SQLJ translator (also compiles the program).

$1.sqlj
The SQLJ source file.

db2profc
The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as
jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password
Specifies a password.

-prepoptions
Specifies the package name for the database with the string "package using
$1", where $1 is the SQLJ source file name.

$1_SJProfile0
Specifies a serialized profile for the program.

Related tasks:

v “Building SQLJ Routines” on page 125

Related reference:

v “SQLJ Application Options for UNIX” on page 121

Related samples:

v “bldsqljs -- Builds Java embedded SQL (SQLJ) stored procedures on UNIX”

128 Building and Running Applications



Windows Batch File for SQLJ Routines
@echo off
rem BATCH FILE: bldsqljs.bat
rem Builds Windows Java embedded SQL (SQLJ) routines

rem To add defaults for user ID (USER) and password (PSWD)
rem Uncomment the following and add the appropriate values
rem set USER=
rem set PSWD=

goto start
:usage
echo Usage: bldsqljs prog_name (requires hardcoding user ID and password)
echo bldsqljs prog_name userid password
echo bldsqljs prog_name userid password server_name
echo bldsqljs prog_name userid password server_name port_number
echo bldsqljs prog_name userid password server_name port_number db_name
echo.
echo Defaults:
echo userid = %USER%
echo password = %PSWD%
echo server_name = %COMPUTERNAME%
echo port_number = 50000
echo db_name = sample
goto exit

:start
rem Translate and compile the SQLJ source file
rem and bind the package to the database.
if "%DB2PATH%" == "" goto nodb2cmd
if "%1" == "" goto usage
if "%2" == "" goto case1
if "%3" == "" goto usage
if "%4" == "" goto case3
if "%5" == "" goto case4
if "%6" == "" goto case5
if "%7" == "" goto case6
goto usage

:case1
if "%USER%" == "" goto usage
if "%PSWD%" == "" goto usage
if "%COMPUTERNAME%" == "" goto nohostname
sqlj %1.sqlj
db2profc -url=jdbc:db2://%COMPUTERNAME%:50000/sample -user=%USER%

-password=%PSWD% -prepoptions="package using %1" %1_SJProfile0
goto continue

:case3
if "%COMPUTERNAME%" == "" goto nohostname
sqlj %1.sqlj
db2profc -url=jdbc:db2://%COMPUTERNAME%:50000/sample -user=%2

-password=%3 -prepoptions="package using %1" %1_SJProfile0
goto continue

Chapter 4. Java 129



:case4
sqlj %1.sqlj
db2profc -url=jdbc:db2://%4:50000/sample -user=%2 -password=%3

-prepoptions="package using %1" %1_SJProfile0
goto continue

:case5
sqlj %1.sqlj
db2profc -url=jdbc:db2://%4:%5/sample -user=%2 -password=%3

-prepoptions="package using %1" %1_SJProfile0
goto continue

:case6
sqlj %1.sqlj
db2profc -url=jdbc:db2://%4:%5/%6 -user=%2 -password=%3

-prepoptions="package using %1" %1_SJProfile0
goto continue

:continue
rem Copy the *.class and *.ser files to the ’function’ directory.
copy %1*.class %DB2PATH%\function\
copy %1*.ser %DB2PATH%\function\
goto exit

:nodb2cmd
echo DB2 command line environment not initialized. Please run db2cmd

and try again.
goto exit

:nohostname
echo Local server name (hostname) could not be determined.
echo.
goto usage

:exit
@echo on

SQLJ Stored Procedure Options for Windows
The following table contains the SQLJ translator and precompile options used
in the bldsqljs.bat batch file on Windows operating systems. These are the
options DB2 recommends that you use to build SQLJ routines (stored
procedures and user-defined functions).

130 Building and Running Applications



Translator and Precompile Options for bldsqljs.bat

sqlj The SQLJ translator (also compiles the program).

%1.sqlj
The SQLJ source file.

db2profc
The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as
jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password
Specifies a password.

-prepoptions
Specifies the package name for the database with the string "package using
%1", where %1 is the SQLJ source file name.

%1_SJProfile0
Specifies a serialized profile for the program.

Related tasks:

v “Building SQLJ Routines” on page 125

Related reference:

v “SQLJ Application Options for Windows” on page 124

Related samples:

v “bldsqljs.bat -- Builds a Java embedded SQL (SQLJ) stored procedure on
Windows”

Chapter 4. Java 131



132 Building and Running Applications



Chapter 5. SQL Procedures

Creating SQL Procedures . . . . . . . 133
Calling SQL Procedures with Client
Applications on UNIX . . . . . . . . 134
Calling SQL Procedures with Client
Applications on Windows . . . . . . . 135
Retaining Intermediate Files for SQL
Procedures . . . . . . . . . . . . 137

Customizing Precompile and Bind Options
for SQL Procedures . . . . . . . . . 138
Backing Up and Restoring SQL Procedures 139
Distributing Compiled SQL Procedures . . 140
Rebinding SQL Procedures. . . . . . . 141

Creating SQL Procedures

The DB2 Command Line Processor scripts (those ending with the .db2
extension), in the sqllib/samples/sqlproc directory on UNIX and the
sqllib\samples\sqlproc directory on Windows, execute CREATE
PROCEDURE statements to create stored procedures on the server. Each CLP
script has a corresponding client application file of the same name, with an
extension denoting its language and application interface: .sqc (for C
embedded SQL), .c (for DB2 CLI), or .java (for JDBC).

Procedure:

Before running a CREATE PROCEDURE CLP script, connect to the sample
database with the command:

db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance where
the sample database is located.

To execute the CREATE PROCEDURE statement contained in the
rsultset.db2 script file, enter the following command:

db2 -td@ -vf rsultset.db2

Now, the SQL procedure is ready to be called.

Related tasks:

v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140
v “Rebinding SQL Procedures” on page 141

© Copyright IBM Corp. 1993 - 2002 133



Related samples:

v “rsultset.db2 -- To create the MEDIAN_RESULT_SET SQL procedure ”

Calling SQL Procedures with Client Applications on UNIX

You can call SQL procedures on UNIX by building and running client
applications. DB2 supplies sample client programs in the
sqllib/samples/sqlproc directory to call the SQL procedures that can be
created from the sample command line processor scripts that are also
supplied. There are client source files for DB2 CLI, C embedded SQL, and
JDBC.

Build scripts are also supplied (except for JDBC) to create the client programs
for these application interfaces:
v bldcli contains the commands to build a DB2 CLI client application for

SQL procedures. This is the same file as the bldapp script in the
sqllib/samples/cli directory.

v bldapp contains the commands to build a C embedded SQL client
application for SQL procedures. This is the same file as the bldapp script in
the sqllib/samples/c directory.

Procedure:

Depending on the application interface you are using, you can build and run
a sample client program to call SQL procedures by following these examples:

DB2 CLI
To build the DB2 CLI client application, rsultset, from the source file
rsultset.c, enter:

bldcli rsultset

This command creates the executable file, rsultset.

To call the stored procedure, run the sample client application by
entering the executable file name, the name of the database to which
you are connecting, and the user ID and password of the database
instance:

rsultset database userid password

C embedded SQL
To build the embedded SQL client application, basecase, from the
source file basecase.sqc, enter the script file name, the executable
name, the database to which you are connecting, and the user ID and
password of the database instance:

134 Building and Running Applications



bldapp basecase database userid password

The result is an executable file, basecase.

To call the stored procedure, run the sample client application by
entering:

basecase database userid password

JDBC To build the JDBC client application, NestedSP, from the source file
NestedSP.java, compile the source file:

javac NestedSP.java

The result is the class file, NestedSP.class.

To call the stored procedure, run the java interpreter on the
application:

java NestedSP userid password database

Related tasks:

v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140
v “Rebinding SQL Procedures” on page 141

Related samples:

v “basecase.sqc -- To call the UPDATE_SALARY SQL procedure”
v “rsultset.c -- To call the MEDIAN_RESULT_SET SQL procedure”

Calling SQL Procedures with Client Applications on Windows

You can call SQL procedures on Windows by building and running client
applications. DB2 supplies sample client programs in the
sqllib\samples\sqlproc directory to call the SQL procedures that can be
created from the sample command line processor scripts that are also
supplied. There are client source files for DB2 CLI, C embedded SQL, and
JDBC.

Batch files are provided (except for JDBC) to create the client programs for
these application interfaces:
v bldcli.bat contains the commands to build a DB2 CLI client application

for SQL procedures. This is the same file as bldapp.bat in the
sqllib\samples\cli directory.

Chapter 5. SQL Procedures 135



v bldapp.bat contains the commands to build a C embedded SQL client
application for SQL procedures. This is the same file as bldapp.bat in the
sqllib\samples\c directory.

Procedure:

Depending on the application interface you are using, you can build and run
a sample client program to call SQL procedures by following these examples:

DB2 CLI
To build the DB2 CLI client application, rsultset, from the source file
rsultset.c, enter:

bldcli rsultset

This command creates the executable file, rsultset.exe.

To call the stored procedure, run the sample client application by
entering the executable file name, the name of the database to which
you are connecting, and the user ID and password of the database
instance:

rsultset database userid password

C embedded SQL
To build the embedded SQL client application, basecase, from the
source file basecase.sqc, enter the batch file name, the executable
name, the database to which you are connecting, and the user ID and
password of the instance which contains the database:

bldapp basecase database userid password

The result is an executable file, basecase.exe.

To call the stored procedure, run the sample client application by
entering:

basecase database userid password

JDBC To build the JDBC client application, NestedSP, from the source file
NestedSP.java, compile the source file:

javac NestedSP.java

The result is the class file, NestedSP.class.

To call the stored procedure, run the java interpreter on the
application:

java NestedSP userid password database

136 Building and Running Applications



Related tasks:

v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Distributing Compiled SQL Procedures” on page 140
v “Rebinding SQL Procedures” on page 141

Related samples:

v “basecase.sqc -- To call the UPDATE_SALARY SQL procedure”
v “rsultset.c -- To call the MEDIAN_RESULT_SET SQL procedure”

Retaining Intermediate Files for SQL Procedures

When you issue a CREATE PROCEDURE statement, DB2 creates a number of
intermediate files that are normally deleted if DB2 successfully completes the
statement. If an SQL procedure does not perform as expected, you might find
it useful to retain the files so you can examine the SQC, C and message log
files created by DB2.

Procedure:

To keep the files that DB2 creates during the successful execution of a
CREATE PROCEDURE statement, you must set the value of the
DB2_SQLROUTINE_KEEP_FILES DB2 registry variable on the server to ″1″,
″y″ or ″yes″, as in the following command:

db2set DB2_SQLROUTINE_KEEP_FILES=1

Then stop and restart DB2 for the change to take affect.

You will then have to manually delete intermediate files that may be left
when an SQL procedure is not created successfully. These files are in the
following directories:

UNIX
$HOME/sqllib/function/routine/sqlproc/<db_name>/<schema_name>/tmp

Windows
sqllib\function\routine\sqlproc\<db_name>\<schema_name>\tmp

where <db_name> and <schema_name> are the database and schema used to
create the SQL procedures.

Related tasks:

v “Customizing Precompile and Bind Options for SQL Procedures” on page
138

Chapter 5. SQL Procedures 137



v “Backing Up and Restoring SQL Procedures” on page 139
v “Creating SQL Procedures” on page 133
v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140
v “Rebinding SQL Procedures” on page 141

Customizing Precompile and Bind Options for SQL Procedures

The precompile and bind options can be customized by setting the
DB2_SQLROUTINE_PREPOPTS DB2 registry variable. These options cannot
be customized at procedure level.

Procedure:

To specify customized precompilation options for SQL procedures, put the list
of precompile options to be used by the DB2 precompiler in the DB2 registry
with the following command:

db2set DB2_SQLROUTINE_PREPOPTS=options

where options specifies the list of precompile options to be used by the DB2
precompiler. Only the following options are allowed:

BLOCKING {UNAMBIG | ALL | NO}
DATETIME {DEF | USA | EUR | ISO | JIS | LOC}
DEGREE {1 | degree-of-parallelism | ANY}
DYNAMICRULES {BIND | RUN}
EXPLAIN {NO | YES | ALL}
EXPLAINSNAP {NO | YES | ALL}
FEDERATED {NO | YES}
INSERT {DEF | BUF}
ISOLATION {CS |RR |UR |RS |NC}
QUERYOPT optimization-level
SYNCPOINT {ONEPHASE | TWOPHASE | NONE}

Example. To have the package use the ISO format for dates and Repeatable
Read as the isolation level, specify the options as follows:

db2set DB2_SQLROUTINE_PREPOPTS="DATETIME ISO ISOLATION RR"

Then stop and restart DB2 for the change to take affect.

Related tasks:

v “Retaining Intermediate Files for SQL Procedures” on page 137

138 Building and Running Applications



v “Backing Up and Restoring SQL Procedures” on page 139
v “Creating SQL Procedures” on page 133
v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140
v “Rebinding SQL Procedures” on page 141

Backing Up and Restoring SQL Procedures

When an SQL procedure is created, the generated shared dynamic linked
library (DLL) is kept in the database catalog, along with the source text,
package, and related files. Therefore, all this information is saved when you
perform a database backup.

Procedure:

At database recovery time, all SQL procedure executables on the filesystem
that belong to the database being recovered will be removed. If the index
creation configuration parameter, indexrec, is set to RESTART, all SQL
procedure executables will be extracted from the catalog table and put back
on the filesystem at next connect time. Otherwise, the SQL executables will be
extracted on first execution of the SQL procedures.

The executables will be put back in the following directory:

UNIX $HOME/sqllib/function/routine/sqlproc/<database_name>

Windows
sqllib\function\routine\sqlproc\<database_name>

where <database_name> represents the database with which the SQL
procedures were created.

If the first attempt to connect to a database after a restore operation returns:
SQL2048N An error occurred while accessing object "SQL PROCEDURE FILES".
Reason code: "7".

Stop DB2 with db2stop, and restart with db2start.

Related tasks:

v “Retaining Intermediate Files for SQL Procedures” on page 137

Chapter 5. SQL Procedures 139



v “Customizing Precompile and Bind Options for SQL Procedures” on page
138

v “Creating SQL Procedures” on page 133
v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140
v “Rebinding SQL Procedures” on page 141

Distributing Compiled SQL Procedures

When you define an SQL procedure, it is converted to a C program,
precompiled and bound against the target database, and compiled and linked
to create a shared library. The compile and link steps require a C or C++
compiler to be available on the database server machine. However, once you
define an SQL procedure, you can distribute it in compiled form to DB2
database server machines that use the same operating system and the same
version of DB2, but do not necessarily have access to a C or C++ compiler.
Under these conditions, DB2 allows the user to extract SQL procedures in
compiled form from one database and install SQL procedures in compiled
form on another database on a different server machine.

DB2 provides both a command line interface and a programming interface for
extracting and installing. The command line interface consists of two CLP
commands: GET ROUTINE and PUT ROUTINE. The programming interface consists
of two built-in stored procedures: GET_ROUTINE_SAR and PUT_ROUTINE_SAR.

Procedure:

To distribute a compiled SQL procedure from one database server to another
database server, perform the following steps:
1. Build the application, including defining the SQL procedures that are part

of the application.
2. After testing the procedures, extract the compiled version of each

procedure into a different file, either by issuing the GET ROUTINE command
or by invoking the GET_ROUTINE_SAR stored procedure. Copy the files to
your distribution media (if necessary).
Example. Assume SCHEMA1.MYPROC is an SQL Procedure that exists on the
source server. The following command creates a file named myproc.sar
that contains a distributable representation of the procedure:

GET ROUTINE INTO myproc.sar FROM PROCEDURE SCHEMA1.MYPROC

140 Building and Running Applications



3. Install the compiled version of each procedure on each server, either by
issuing the PUT ROUTINE command, or by invoking the PUT_ROUTINE_SAR
stored procedure, using the files created in the previous step.
Example. The following command installs the procedure from the
previous example on the target server:

PUT ROUTINE FROM myproc.sar

Each database server must have the same operating system and DB2 level.

Note: If a GET ROUTINE or a PUT ROUTINE operation (or their
corresponding procedure) fails to execute successfully, it will always
return an error, along with diagnostic text providing information about
the cause of the failure. For example, if the procedure name provided
to GET ROUTINE does not identify an SQL procedure, diagnostic ″-204,
42704″ text will be returned, where ″-204″ and ″42704″ are the
SQLCODE and SQLSTATE, respectively, that identify the cause of the
problem. The SQLCODE and SQLSTATE in this example indicate that
the procedure name provided in the GET ROUTINE command is
undefined.

Related tasks:

v “Setting Up the SQL Procedures Environment” on page 23
v “Creating SQL Procedures” on page 133
v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Rebinding SQL Procedures” on page 141

Related reference:

v “GET_ROUTINE_SAR procedure” in the SQL Reference, Volume 1

v “PUT_ROUTINE_SAR procedure” in the SQL Reference, Volume 1

v “GET ROUTINE” in the Command Reference

v “PUT ROUTINE” in the Command Reference

Rebinding SQL Procedures

Procedure:

To rebind the package corresponding to an SQL procedure, call the
SYSPROC.REBIND_ROUTINE_PACKAGE built-in stored procedure.

Chapter 5. SQL Procedures 141



For example, if an SQL procedure named MYSCHEMA.MYPROC exists in the
database, its package can be rebound from the command line processor (CLP)
by issuing the following command:

CALL SYSPROC.REBIND_ROUTINE_PACKAGE(’P’, ’MYSCHEMA.MYPROC’, ’CONSERVATIVE’)

where ’P’ indicates that ’MYSCHEMA.MYPROC’ is a procedure name. A value of
’SP’ for the first parameter would indicate that ’MYSCHEMA.MYPROC’ is a
specific procedure name. ’CONSERVATIVE’ indicates that conservative rebinding
semantics should be applied. See the REBIND command in the related links
below for more details on conservative rebinding.

Related tasks:

v “Setting Up the SQL Procedures Environment” on page 23
v “Retaining Intermediate Files for SQL Procedures” on page 137
v “Customizing Precompile and Bind Options for SQL Procedures” on page

138
v “Backing Up and Restoring SQL Procedures” on page 139
v “Creating SQL Procedures” on page 133
v “Calling Stored Procedures with the CALL Statement” on page 143
v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140

Related reference:

v “REBIND” in the Command Reference

142 Building and Running Applications



Chapter 6. Calling Stored Procedures

Calling Stored Procedures with the CALL
Statement . . . . . . . . . . . . 143

This chapter provides detailed information for calling DB2 stored procedures
on the command line with the CALL statement.

For the latest DB2 application development updates, visit the Web page at:
http://www.ibm.com/software/data/db2/udb/ad

Calling Stored Procedures with the CALL Statement

You can call stored procedures by using the call SQL Statement from the DB2
command line processor interface. The stored procedure being called must be
defined in the catalog.

Procedure:

To call the stored procedure, first connect to the database:
db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance where
the sample database is located.

To use the call statement, enter the stored procedure name plus any IN or
INOUT parameters, as well as ’?’ as a place-holder for each OUT parameter.

The parameters for a stored procedure are given in the CREATE PROCEDURE
statement for the stored procedure in the program source file. For example, in
the SQL procedure source file, whiles.db2, the CREATE PROCEDURE statement for
the DEPT_MEDIAN procedure begins:

CREATE PROCEDURE DEPT_MEDIAN
(IN deptNumber SMALLINT, OUT medianSalary DOUBLE)

To call this procedure, you need to put in a valid SMALLINT value for the IN
parameter, deptNumber, and a question mark, ’?’, for the OUT parameter. The
DEPT_MEDIAN procedure accesses the STAFF table of the sample database.
The variable deptNumber is assigned to the DEPT column of the STAFF table,
so you can obtain a valid value from the DEPT column: for example, the
value ″51″.

© Copyright IBM Corp. 1993 - 2002 143

http://www.ibm.com/software/data/db2/udb/ad


Now, you can enter the call statement with the procedure name and the
value for the IN parameter, and a question mark, ’?’, for the value of the OUT
parameter. The procedure’s parameters must be enclosed in parentheses as
follows:

db2 call dept_median (51, ?)

Note: On UNIX platforms the parentheses have special meaning to the
command shell, so they must be preceded with a ″\″ character or
surrounded with quotes, as follows:

db2 "call dept_median (51, ?)"

You do not use quotes if you are using the interactive mode of the
command line processor.

After running the above command, you should receive this result:
Value of output parameters
--------------------------
Parameter Name : MEDIANSALARY
Parameter Value : +1.76545000000000E+004

DB20000I The SQL command completed successfully.

Related tasks:

v “Calling SQL Procedures with Client Applications on UNIX” on page 134
v “Calling SQL Procedures with Client Applications on Windows” on page

135
v “Distributing Compiled SQL Procedures” on page 140

Related samples:

v “whiles.db2 -- To create the DEPT_MEDIAN SQL procedure ”
v “whiles.sqc -- To call the DEPT_MEDIAN SQL procedure”

144 Building and Running Applications



Part 3. Building and Running Platform-Specific
Applications

© Copyright IBM Corp. 1993 - 2002 145



146 Building and Running Applications



Chapter 7. AIX

Important Considerations . . . . . . . 148
AIX Export Files for Routines . . . . . 148
AIX Routines and the CREATE Statement 148
Replacing an AIX Shared Library . . . 149
Considerations for Installing COBOL on
AIX . . . . . . . . . . . . . 149

IBM C . . . . . . . . . . . . . 150
Building C Applications on AIX . . . . 150
Build Script for C Applications . . . . 152
AIX C Application Compile and Link
Options . . . . . . . . . . . . 153
Building C Routines on AIX . . . . . 154
Build Script for C Routines . . . . . 158
AIX C Routine Compile and Link Options 159
Building C Multi-Threaded Applications
on AIX . . . . . . . . . . . . 160
Build Script for C Multi-threaded
Applications . . . . . . . . . . 161

VisualAge C++. . . . . . . . . . . 161
Building C++ Applications on AIX . . . 161
Build Script for C++ Applications . . . 163
AIX C++ Application Compile and Link
Options . . . . . . . . . . . . 164
Building C++ Routines on AIX . . . . 165
Build Script for C++ Routines. . . . . 169
AIX C++ Routine Compile and Link
Options . . . . . . . . . . . . 170
Building C++ Multi-Threaded
Applications on AIX . . . . . . . . 171
Build Script for C++ Multi-threaded
Applications . . . . . . . . . . 173

VisualAge C++ Configuration Files . . . . 173
Building VisualAge C++ Programs with
Configuration Files . . . . . . . . 173
Building C++ DB2 API Applications with
Configuration Files . . . . . . . . 174

Building C++ Embedded SQL
Applications with Configuration Files . . 175
Building C++ Stored Procedures with
Configuration Files . . . . . . . . 176
Building C++ User-defined Functions
with Configuration Files . . . . . . 177

IBM COBOL Set for AIX . . . . . . . 179
Configuring the IBM COBOL Compiler
on AIX . . . . . . . . . . . . 179
Building IBM COBOL Applications on
AIX . . . . . . . . . . . . . 180
Build Script for IBM COBOL Applications 181
AIX IBM COBOL Application Compile
and Link Options . . . . . . . . . 182
Building IBM COBOL Routines on AIX 183
Build Script for IBM COBOL Routines 184
AIX IBM COBOL Routine Compile and
Link Options . . . . . . . . . . 185

Micro Focus COBOL . . . . . . . . . 186
Configuring the Micro Focus COBOL
Compiler on AIX . . . . . . . . . 186
Building Micro Focus COBOL
Applications on AIX . . . . . . . . 187
Build Script for Micro Focus COBOL
Applications . . . . . . . . . . 189
AIX Micro Focus COBOL Application
Compile and Link Options . . . . . . 190
Building Micro Focus COBOL Routines
on AIX . . . . . . . . . . . . 190
Build Script for Micro Focus COBOL
Routines . . . . . . . . . . . . 192
AIX Micro Focus COBOL Routine
Compile and Link Options . . . . . . 193

REXX . . . . . . . . . . . . . . 194
Building REXX Applications on AIX . . 194

This chapter provides detailed information for building applications on AIX.
For the latest DB2 application development updates for AIX, visit the Web
page at:

http://www.ibm.com/software/data/db2/udb/ad

© Copyright IBM Corp. 1993 - 2002 147

http://www.ibm.com/software/data/db2/udb/ad


Important Considerations

This section gives AIX-specific information for building DB2 applications on
various supported compilers.

AIX Export Files for Routines

External routines are compiled on the server, and stored and executed in
shared libraries on the server. These shared libraries are created when you
compile the routines.

AIX requires you to provide an export file which specifies which global
functions in the library are callable from outside it. This file must include the
names of all routines in the library. Other UNIX platforms simply export all
global functions in the library. This is an example of an AIX export file:

#! spserver export file
outlanguage

The export file spserver.exp lists the stored procedure outlanguage. The
linker uses spserver.exp to create the shared library spserver that contains
the outlanguage stored procedure.

The AIX linker documentation has additional information on export files.

Related concepts:

v “AIX Routines and the CREATE Statement” on page 148

AIX Routines and the CREATE Statement

The following explains the relationship between compiling and linking your
routine and the information you provide in the EXTERNAL NAME clause of
the CREATE statement.

When you compile and link your program, you can identify external functions
by using an export file specified with the -bE: option.

Suppose that the library myrtns contains three routines: modify, remove, and
add. You identify modify as the default entry point, by putting it as the first
entry in the export file that is linked in in the link step. The remove and add
functions are indicated as additional exportable functions by also including
them in an export file.

In the link step, you specify:
-bE:myrtns.exp

which identifies the export file myrtns.exp.

148 Building and Running Applications



The export file looks like this:
modify
remove
add

Finally, your EXTERNAL NAME clauses for the routines, which are
implemented with the modify, remove, and add functions, are coded as follows:
EXTERNAL NAME ’/u/mydir/routines/myrtns!modify’

and
EXTERNAL NAME ’/u/mydir/routines/myrtns!remove’

and
EXTERNAL NAME ’/u/mydir/routines/myrtns!add’

Note: The default path used will be sqllib/function. This means if the
EXTERNAL NAME clause is specified as follows:

EXTERNAL NAME ’myrtns!modify’

DB2 will attempt to load myrtns from sqllib/function.

Related concepts:

v “AIX Export Files for Routines” on page 148

Replacing an AIX Shared Library

Procedure:

After a shared library is built, it is typically copied into a directory from
which DB2 will access it. When attempting to replace a routine shared library,
you should either run /usr/sbin/slibclean to flush the AIX shared library
cache, or remove the library from the target directory and then copy the
library from the source directory to the target directory. Otherwise, the copy
operation may fail because AIX keeps a cache of referenced libraries and does
not allow the library to be overwritten.

Considerations for Installing COBOL on AIX

Because of the way AIX loads routines and resolves library references within
them, there are requirements on how COBOL should be installed. These
requirements become a factor when a COBOL program loads a shared library
(routine) at run time.

When a routine is loaded, the chain of libraries it refers to must also be
loaded. When AIX searches for a library only indirectly referenced by your
program, it must use the path compiled into the library that referenced it

Chapter 7. AIX 149



when it was built by the language provider (IBM COBOL or Micro Focus
COBOL). This path may very well not be the same path in which the compiler
was installed. If the library in the chain cannot be found, the routine load will
fail, and you will receive SQLCODE -444.

To ensure this does not happen, install the compiler wherever you want, then
create symbolic links of all language libraries from the install directory into
/usr/lib (a directory that is almost always searched when a library needs to
be loaded). You could link the libraries into sqllib/function (the routine
directory), but this only works for one database instance; /usr/lib works for
everyone on the machine.

Related tasks:

v “Setting Up the UNIX Application Development Environment” on page 25
v “Configuring the IBM COBOL Compiler on AIX” on page 179
v “Configuring the Micro Focus COBOL Compiler on AIX” on page 186

IBM C

Building information for DB2 CLI applications and routines is in the CLI
Guide and Reference.

Building C Applications on AIX

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The build file, bldapp, contains the commands to build a DB2 application
program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

150 Building and Running Applications



The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the DB2 API non-embedded SQL sample program, cli_info, from
the source file cli_info.c, enter:

bldapp cli_info

The result is an executable file, cli_info.

To run the executable file, enter the executable name:
cli_info

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
source file tbmod.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file, tbmod.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building C Routines on AIX” on page 154

Chapter 7. AIX 151



Related reference:

v “AIX C Application Compile and Link Options” on page 153
v “C/C++ Samples” on page 69

Related samples:

v “bldapp -- Builds AIX C application programs”
v “cli_info.c -- Set and get information at the client level (C)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “tbmod.sqc -- How to modify table data (C)”

Build Script for C Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds AIX C application programs
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG=-q64
else

EXTRA_CFLAG=
fi

# If embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2 $3 $4
# Compile the utilemb.c error-checking utility.
xlc $EXTRA_CFLAG -I$DB2PATH/include -c utilemb.c

else
# Compile the utilapi.c error-checking utility.
xlc $EXTRA_CFLAG -I$DB2PATH/include -c utilapi.c

fi

# Compile the program.
xlc $EXTRA_CFLAG -I$DB2PATH/include -c $1.c

if [ -f $1".sqc" ]
then

# Link the program with utilemb.o
xlc $EXTRA_CFLAG -o $1 $1.o utilemb.o -ldb2 -L$DB2PATH/lib

152 Building and Running Applications



else
# Link the program with utilapi.o
xlc $EXTRA_CFLAG -o $1 $1.o utilapi.o -ldb2 -L$DB2PATH/lib

fi

AIX C Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C embedded SQL and DB2 API applications with the AIX IBM C
compiler, as demonstrated in the bldapp build script.

Compile and Link Options for bldapp

Compile Options:

xlc The IBM C compiler.

$EXTRA_CFLAG
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link Options:

xlc Use the compiler as a front end for the linker.

$EXTRA_CFLAG
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-o $1 Specify the executable program.

$1.o Specify the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If not an embedded SQL program, include the DB2 API utility object file for
error checking.

-ldb2 Link to the DB2 library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

Related tasks:

Chapter 7. AIX 153



v “Building C Applications on AIX” on page 150

Related reference:

v “AIX C Routine Compile and Link Options” on page 158

Related samples:

v “bldapp -- Builds AIX C application programs”

Building C Routines on AIX

DB2 provides build scripts for compiling and linking C programs. These are
located in the sqllib/samples/c directory, along with sample programs that
can be built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures and user-defined functions). The script compiles the routines into
a shared library that can be loaded by the database manager and called by a
client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect.

The database parameter is optional. If no database name is supplied, the
program uses the default sample database. And since the stored procedure
must be built on the same instance where the database resides, there are no
parameters for user ID and password.

Procedure:

The following examples show you how to build routine shared libraries with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure Shared Library

To build the sample program spserver from the source file spserver.sqc:
1. If connecting to the sample database, enter the build script name and

program name:
bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

154 Building and Running Applications



The script copies the shared library to the server in the path
sqllib/function.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by
calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new shared library to be
recognized.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library.

You can build spclient by using the script, bldapp.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Non-embedded SQL UDF Shared Library

To build the user-defined function program, udfsrv, from the source file
udfsrv.c, enter the build script name and program name:

bldrtn udfsrv

The script copies the UDF to the sqllib/function directory.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided. You

Chapter 7. AIX 155



can build the DB2 CLI udfcli client program from the source file udfcli.c, in
sqllib/samples/cli, using the script, bldapp.

You can build the embedded SQL udfcli client program from the source file
udfcli.sqc, in sqllib/samples/c, using the script, bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Embedded SQL UDF Shared Library

To build the embedded SQL user-defined function program, udfemsrv, from
the source file udfemsrv.sqc, if connecting to the sample database, enter the
build script name and program name:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The script copies the UDF to the sqllib/function directory.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build the udfemcli client program from the source file
udfemcli.sqc, in sqllib/samples/c, using the script, bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

156 Building and Running Applications



database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfemsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building C Applications on AIX” on page 150

Related reference:

v “AIX C Routine Compile and Link Options” on page 158
v “C/C++ Samples” on page 69

Related samples:

v “bldrtn -- Builds AIX C routines (stored procedures and UDFs)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “spcat -- To catalog C stored procedures on UNIX”
v “spclient.sqc -- Call various stored procedures (C)”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”
v “spserver.sqc -- A variety of types of stored procedures (C)”
v “udfcli.sqc -- Call a variety of types of user-defined functions (C)”
v “udfemcli.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfemsrv.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfsrv.c -- Call a variety of types of user-defined functions (C)”

Chapter 7. AIX 157



Build Script for C Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds AIX C routines (stored procedures and UDFs)
# Usage: bldrtn <prog_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG=-q64
else

EXTRA_CFLAG=
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2
fi

# Compile the program.
xlc_r $EXTRA_CFLAG -I$DB2PATH/include -c $1.c

# Link the program using the export file $1.exp,
xlc_r $EXTRA_CFLAG -qmkshrobj -o $1 $1.o -ldb2 -L$DB2PATH/lib -bE:$1.exp

# Copy the shared library to the sqllib/function subdirectory.
# Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

AIX C Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C routines (stored procedures and user-defined functions) with the
AIX IBM C compiler, as demonstrated in the bldrtn build script.

158 Building and Running Applications



Compile and Link Options for bldrtn

Compile Options:

xlc_r Use the multi-threaded version of the IBM C compiler, needed as the
routines may run in the same process as other routines (THREADSAFE) or
in the engine itself (NOT FENCED).

$EXTRA_CFLAG
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

xlc_r Use the multi-threaded version of the compiler as a front end for the linker.

$EXTRA_CFLAG
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-qmkshrobj
Create the shared library.

-o $1 Specify the output file name.

$1.o Specify the object file.

-ldb2 Link with the DB2 library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-bE:$1.exp
Specify an export file. The export file contains a list of the routines.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C Routines on AIX” on page 154

Related reference:

v “AIX C Application Compile and Link Options” on page 153

Related samples:

v “bldrtn -- Builds AIX C routines (stored procedures and UDFs)”

Chapter 7. AIX 159



Building C Multi-Threaded Applications on AIX

C multi-threaded applications on AIX need to be compiled and linked with
the xlc_r compiler instead of the xlc compiler or, for C++, with the xlC_r
compiler instead of the xlC compiler. The _r versions set the appropriate
preprocessor defines for multi-threaded compilation, and supply the
appropriate threaded library names to the linker.

Additional information about compiler and link flag settings using the
multi-threaded compiler front ends can be obtained from your compiler
documentation.

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script file bldmt, in sqllib/samples/c, contains the commands to build an
embedded SQL multi-threaded program. The first parameter, $1, specifies the
name of your source file. The second parameter, $2, specifies the name of the
database to which you want to connect. Parameter $3 specifies the user ID for
the database, and $4 specifies the password for the user ID. Only the first
parameter, the source file name, is required. Database name, user ID, and
password are optional. If no database name is supplied, the program uses the
default sample database.

Besides the xlc_r compiler and the absence of a utility file linked in, the
compile and link options are the same as those used for the embedded SQL
script file, bldapp.

Procedure:

To build the multi-threaded sample program, dbthrds, from the source file
dbthrds.sqc, enter:

bldmt dbthrds

The result is an executable file, dbthrds. To run the executable file against the
sample database, enter the executable name:

dbthrds

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building C Applications on AIX” on page 150

160 Building and Running Applications



Related reference:

v “AIX C Application Compile and Link Options” on page 153
v “C/C++ Samples” on page 69

Related samples:

v “bldmt -- Builds AIX C multi-threaded applications”
v “dbthrds.sqc -- How to use multiple context APIs on UNIX (C)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C Multi-threaded Applications
#! /bin/sh
# SCRIPT: bldmt
# Builds AIX C multi-threaded applications
# Usage: bldmt <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG=-q64
else

EXTRA_CFLAG=
fi

# If embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2 $3 $4
fi

# Compile the program.
xlc_r $EXTRA_CFLAG -I$DB2PATH/include -c $1.c

# Link the program.
xlc_r $EXTRA_CFLAG -o $1 $1.o -L$DB2PATH/lib -ldb2

VisualAge C++

Building C++ Applications on AIX

DB2 provides build scripts for compiling and linking C++ embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

Chapter 7. AIX 161



The build file, bldapp contains the commands to build DB2 API and
embedded SQL applications.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the non-embedded SQL sample program cli_info from the source
file cli_info.C, enter:

bldapp cli_info

The result is an executable file, cli_info. You can run the executable file
against the sample database by entering:

cli_info

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
source file tbmod.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file, tbmod.

162 Building and Running Applications



There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building C++ Routines on AIX” on page 165

Related reference:

v “AIX C++ Application Compile and Link Options” on page 164
v “C/C++ Samples” on page 69

Related samples:

v “bldapp -- Builds AIX C++ applications”
v “cli_info.C -- Set and get information at the client level (C++)”
v “tbmod.sqC -- How to modify table data (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C++ Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds AIX C++ applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG=-q64
else

EXTRA_CFLAG=

Chapter 7. AIX 163



fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2 $3 $4
# Compile the utilemb.C error-checking utility.
xlC $EXTRA_CFLAG -I$DB2PATH/include -c utilemb.C

else
# Compile the utilapi.C error-checking utility.
xlC $EXTRA_CFLAG -I$DB2PATH/include -c utilapi.C

fi

# Compile the program.
xlC $EXTRA_CFLAG -I$DB2PATH/include -c $1.C

if [ -f $1".sqC" ]
then

# Link the program with utilemb.o
xlC $EXTRA_CFLAG -o $1 $1.o utilemb.o -ldb2 -L$DB2PATH/lib

else
# Link the program with utilapi.o
xlC $EXTRA_CFLAG -o $1 $1.o utilapi.o -ldb2 -L$DB2PATH/lib

fi

AIX C++ Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C++ embedded SQL and DB2 API applications with the AIX IBM
VisualAge C++ compiler, as demonstrated in the bldapp build script.

Compile and Link Options for bldapp

Compile Options:

xlC The VisualAge C++ compiler.

EXTRA_CFLAG
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

164 Building and Running Applications



Compile and Link Options for bldapp

Link options:

xlC Use the compiler as a front end for the linker.

EXTRA_CFLAG
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-o $1 Specify the executable program.

$1.o Specify the program object file.

utilapi.o
Include the API utility object file for non-embedded SQL programs.

utilemb.o
Include the embedded SQL utility object file for embedded SQL programs.

-ldb2 Link with the DB2 library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C++ Applications on AIX” on page 161
v “Building C++ Embedded SQL Applications with Configuration Files” on

page 175
v “Building C++ DB2 API Applications with Configuration Files” on page 174

Related reference:

v “AIX C++ Routine Compile and Link Options” on page 170

Related samples:

v “bldapp -- Builds AIX C++ applications”

Building C++ Routines on AIX

DB2 provides build scripts for compiling and linking C++ programs. These
are located in the sqllib/samples/cpp directory, along with sample programs
that can be built with these files.

The script file bldrtn contains the commands to build routines. The script file
compiles the routines into a shared library that can be loaded by the database
manager and called by a client application.

Chapter 7. AIX 165



The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect.

The database parameter is optional. If no database name is supplied, the
program uses the default sample database. And since the stored procedure
must be built on the same instance where the database resides, there are no
parameters for user ID and password.

Procedure:

The following examples show you how to build routine shared libraries with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure Shared Library

To build the sample program spserver from the source file spserver.sqC:
1. If connecting to the sample database, enter the build script name and

program name:
bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

The script file copies the shared library to the server in the path
sqllib/function.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by
calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new shared library to be
recognized.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library. You can build spclient
by using the script file, bldapp.

To call the stored procedures in the shared library, run the sample client
application by entering:

166 Building and Running Applications



spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Non-embedded SQL UDF Shared Library

To build the user-defined function program, udfsrv, from the source file
udfsrv.C, enter the build script name and program name:

bldrtn udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the database manager can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build udfcli from the source file udfcli.sqC using the script file,
bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

Chapter 7. AIX 167



The client application accesses the shared library, udfsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Embedded SQL UDF Shared Library

To build the embedded SQL user-defined function program, udfemsrv from
the source file udfemsrv.sqC, if connecting to the sample database, enter the
build script name and program name:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The script file copies the UDF to the sqllib/function directory.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build udfemcli from the source file udfemcli.sqC using the
script file bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfemsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building C++ Applications on AIX” on page 161

Related reference:

168 Building and Running Applications



v “AIX C++ Routine Compile and Link Options” on page 170
v “C/C++ Samples” on page 69

Related samples:

v “bldrtn -- Builds AIX C++ routines (stored procedures and UDFs)”
v “spclient.sqC -- Call various stored procedures (C++)”
v “spserver.sqC -- A variety of types of stored procedures (C++)”
v “udfcli.sqC -- Call a variety of types of user-defined functions (C++)”
v “udfemcli.sqC -- Call a variety of types of embedded SQL user-defined

functions. (C++)”
v “udfemsrv.sqC -- Call a variety of types of embedded SQL user-defined

functions. (C++)”
v “udfsrv.C -- Call a variety of types of user-defined functions (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “spcat -- To catalog C stored procedures on UNIX”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”

Build Script for C++ Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds AIX C++ routines (stored procedures and UDFs)
# Usage: bldrtn <prog_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG=-q64
else

EXTRA_CFLAG=
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2
fi

Chapter 7. AIX 169



# Compile the program.
xlC_r $EXTRA_CFLAG -I$DB2PATH/include -c $1.C

# Link using export file $1.exp, creating shared library $1
xlC_r $EXTRA_CFLAG -qmkshrobj -o $1 $1.o -L$DB2PATH/lib -ldb2 -bE $1.exp

# Copy the shared library to the sqllib/function subdirectory.
# Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

AIX C++ Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C++ routines (stored procedures and user-defined functions) with the
AIX VisualAge C++ compiler, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:

xlC_r The multi-threaded version of the IBM VisualAge C++ compiler, needed as
the routines may run in the same process as other routines (THREADSAFE)
or in the engine itself (NOT FENCED).

$EXTRA_CFLAG
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

170 Building and Running Applications



Compile and Link Options for bldrtn

Link options:

xlC_r Use the multi-threaded version of the compiler as a front-end for the linker.

$EXTRA_CFLAG
Contains ″-q64″ value if ’BUILD_64BIT=true’ is uncommented; otherwise, it
contains no value.

-qmkshrobj
Create a shared library.

-o $1 Specify the output as a shared library file.

$1.o Specify the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link with the DB2 library.

-bE $1.exp
Specify an export file. The export file contains a list of the routines.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C Routines on AIX” on page 154
v “Building C++ Stored Procedures with Configuration Files” on page 176
v “Building C++ User-defined Functions with Configuration Files” on page

177

Related reference:

v “AIX C++ Application Compile and Link Options” on page 164

Related samples:

v “bldrtn -- Builds AIX C++ routines (stored procedures and UDFs)”

Building C++ Multi-Threaded Applications on AIX

C++ multi-threaded applications on AIX need to be compiled and linked with
the xlC_r compiler instead of the xlC compiler or, for C, with the xlc_r
compiler instead of the xlc compiler. The _r versions set the appropriate
preprocessor defines for multi-threaded compilation and supply the
appropriate threaded library names to the linker.

Chapter 7. AIX 171



Additional information about compiler and link flag settings using the
multi-threaded compiler front ends can be obtained from your compiler
documentation.

DB2 provides build scripts for compiling and linking C++ embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

The script, bldmt, contains the commands to build multi-threaded
applications.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Parameter $3 specifies the user ID for the database, and $4 specifies
the password for the user ID. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.

Besides the xlC_r compiler, discussed above, and no utility file linked in, the
compile and link options are the same as those used in the embedded SQL
script file, bldapp.

Procedure:

To build the multi-threaded sample program, dbthrds, from the source file
dbthrds.sqC, enter:

bldmt dbthrds

The result is an executable file, dbthrds. To run the executable file against the
sample database, enter the executable name:

dbthrds

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building C++ Applications on AIX” on page 161

Related reference:

v “AIX C++ Application Compile and Link Options” on page 164
v “C/C++ Samples” on page 69

Related samples:

v “bldmt -- Builds AIX C++ multi-threaded applications”

172 Building and Running Applications



v “dbthrds.sqC -- How to use multiple context APIs on UNIX (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C++ Multi-threaded Applications
#! /bin/sh
# SCRIPT: bldmt
# Builds AIX C++ multi-threaded applications
# Usage: bldmt <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# Precompile and bind the program.
./embprep $1 $2 $3 $4

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG=-q64
else

EXTRA_CFLAG=
fi

# Compile the program.
xlC_r $EXTRA_CFLAG -I$DB2PATH/include -c $1.C

# Link the program.
xlC_r $EXTRA_CFLAG -o $1 $1.o -L$DB2PATH/lib -ldb2

VisualAge C++ Configuration Files

Note: Building information for CLI applications and routines is in the CLI
Guide and Reference.

Building VisualAge C++ Programs with Configuration Files

VisualAge C++ Version 5.0 has both an incremental compiler and a batch
mode compiler. While the batch mode compiler uses makefiles and build files,
the incremental compiler uses configuration files instead. See the
documentation that comes with VisualAge C++ Version 5.0 to learn more
about this.

DB2 provides configuration files for the different types of DB2 programs you
can build with the VisualAge C++ compiler.

Procedure:

Chapter 7. AIX 173



To use a DB2 configuration file, you first set an environment variable to the
program name you wish to compile. Then you compile the program with a
command supplied by VisualAge C++. Here are the topics describing how
you can use the configuration files provided by DB2 to compile different types
of programs:
v Building C++ Embedded SQL Applications with Configuration Files
v Building C++ DB2 API Applications with Configuration Files
v Building C++ Stored Procedures with Configuration Files
v Building C++ User-defined Functions with Configuration Files

Related tasks:

v “Building C++ Embedded SQL Applications with Configuration Files” on
page 175

v “Building C++ DB2 API Applications with Configuration Files” on page 174
v “Building C++ Stored Procedures with Configuration Files” on page 176
v “Building C++ User-defined Functions with Configuration Files” on page

177
v “Building C Applications on AIX” on page 150
v “Building C Routines on AIX” on page 154
v “Building C++ Applications on AIX” on page 161
v “Building C++ Routines on AIX” on page 165

Building C++ DB2 API Applications with Configuration Files

The configuration file, api.icc, in sqllib/samples/c and in
sqllib/samples/cpp, allows you to build DB2 API programs in C or C++ on
AIX.

Procedure:

To use the configuration file to build the DB2 API sample program cli_info
from the source file cli_info.c, do the following:
1. Set the API environment variable to the program name by entering:

v For bash or Korn shell:
export API=cli_info

v For C shell:
setenv API cli_info

2. If you have an api.ics file in your working directory, produced by
building a different program with the api.icc file, delete the api.ics file
with this command:

rm api.ics

174 Building and Running Applications



An existing api.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld api.icc

Note: The vacbld command is provided by VisualAge C++.

The result is an executable file, cli_info. You can run the program by
entering the executable name:

cli_info

Related tasks:

v “Building C++ Embedded SQL Applications with Configuration Files” on
page 175

v “Building C++ Stored Procedures with Configuration Files” on page 176
v “Building C++ User-defined Functions with Configuration Files” on page

177

Building C++ Embedded SQL Applications with Configuration Files

The configuration file, emb.icc, in sqllib/samples/c and sqllib/samples/cpp,
allows you to build DB2 embedded SQL applications in C and C++ on AIX.

Procedure:

To use the configuration file to build the embedded SQL application tbmod
from the source file tbmod.sqc, do the following:
1. Set the EMB environment variable to the program name by entering:

v For bash or Korn shell:
export EMB=tbmod

v For C shell:
setenv EMB tbmod

2. If you have an emb.ics file in your working directory, produced by
building a different program with the emb.icc file, delete the emb.ics file
with this command:

rm emb.ics

An existing emb.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld emb.icc

Note: The vacbld command is provided by VisualAge C++.

Chapter 7. AIX 175



The result is an executable file, tbmod. You can run the program by entering
the executable name:

tbmod

Related tasks:

v “Building C++ DB2 API Applications with Configuration Files” on page 174
v “Building C++ Stored Procedures with Configuration Files” on page 176
v “Building C++ User-defined Functions with Configuration Files” on page

177

Building C++ Stored Procedures with Configuration Files

The configuration file, stp.icc, in sqllib/samples/c and sqllib/samples/cpp,
allows you to build DB2 embedded SQL stored procedures in C and C++ on
AIX.

Procedure:

To use the configuration file to build the embedded SQL stored procedure
shared library spserver from the source file spserver.sqc, do the following:
1. Set the STP environment variable to the program name by entering:

v For bash or Korn shell:
export STP=spserver

v For C shell:
setenv STP spserver

2. If you have an stp.ics file in your working directory, produced by
building a different program with the stp.icc file, delete the stp.ics file
with this command:

rm stp.ics

An existing stp.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld stp.icc

Note: The vacbld command is provided by VisualAge C++.

The stored procedure shared library is copied to the server in the path
sqllib/function.

Next, catalog the stored procedures in the shared library by running the spcat
script on the server:

spcat

176 Building and Running Applications



This script connects to the sample database, uncatalogs the stored procedures
if they were previously cataloged by calling spdrop.db2, then catalogs them
by calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

Then, stop and restart the database to allow the new shared library to be
recognized. If necessary, set the file mode for the shared library so the DB2
instance can access it.

Once you build the stored procedure shared library, spserver, you can build
the client application, spclient, that calls the stored procedures in it. You can
build spclient using the configuration file, emb.icc.

To call the stored procedures, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Related tasks:

v “Building C++ Embedded SQL Applications with Configuration Files” on
page 175

v “Building C++ DB2 API Applications with Configuration Files” on page 174
v “Building C++ User-defined Functions with Configuration Files” on page

177

Building C++ User-defined Functions with Configuration Files

The configuration file, udf.icc, in sqllib/samples/c and sqllib/samples/cpp,
allows you to build user-defined functions in C and C++ on AIX.

Procedure:

Chapter 7. AIX 177



To use the configuration file to build the user-defined function program
udfsrv from the source file udfsrv.c, do the following:
1. Set the UDF environment variable to the program name by entering:

v For bash or Korn shell:
export UDF=udfsrv

v For C shell:
setenv UDF udfsrv

2. If you have a udf.ics file in your working directory, produced by building
a different program with the udf.icc file, delete the udf.ics file with this
command:

rm udf.ics

An existing udf.ics file produced for the same program you are going to
build again does not have to be deleted.

3. Compile the sample program by entering:
vacbld udf.icc

Note: The vacbld command is provided by VisualAge C++.

The UDF library is copied to the server in the path sqllib/function.

If necessary, set the file mode for the user-defined function so the DB2
instance can run it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided.

You can build the DB2 CLI udfcli program from the source file udfcli.c, in
sqllib/samples/cli, by using the configuration file cli.icc.

You can build the embedded SQL udfcli program from the source file
udfcli.sqc, in sqllib/samples/c, by using the configuration file emb.icc.

To call the UDF, run the sample calling application by entering the executable
name:

udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

Related tasks:

v “Building C++ Embedded SQL Applications with Configuration Files” on
page 175

v “Building C++ DB2 API Applications with Configuration Files” on page 174

178 Building and Running Applications



v “Building C++ Stored Procedures with Configuration Files” on page 176

IBM COBOL Set for AIX

Configuring the IBM COBOL Compiler on AIX

The following are steps you need to take if you develop applications that
contain embedded SQL and DB2 API calls, and you are using the IBM
COBOL Set for AIX compiler.

Procedure:

v When you precompile your application using the command line processor
command db2 prep, use the target ibmcob option.

v Do not use tab characters in your source files.
v You can use the PROCESS and CBL keywords in the first line of your source

files to set compile options.
v If your application contains only embedded SQL, but no DB2 API calls, you

do not need to use the pgmname(mixed) compile option. If you use DB2 API
calls, you must use the pgmname(mixed) compile option.

v If you are using the ″System/390 host data type support″ feature of the
IBM COBOL Set for AIX compiler, the DB2 include files for your
applications are in the following directory:
$HOME/sqllib/include/cobol_i

If you are building DB2 sample programs using the script files provided,
the include file path specified in the script files must be changed to point to
the cobol_i directory and not the cobol_a directory.

If you are NOT using the ″System/390 host data type support″ feature of
the IBM COBOL Set for AIX compiler, or you are using an earlier version of
this compiler, then the DB2 include files for your applications are in the
following directory:
$HOME/sqllib/include/cobol_a

Specify COPY file names to include the .cbl extension as follows:
COPY "sql.cbl".

Related concepts:

v “Considerations for Installing COBOL on AIX” on page 149

Related tasks:

v “Setting Up the UNIX Application Development Environment” on page 25
v “Building IBM COBOL Applications on AIX” on page 180

Chapter 7. AIX 179



v “Building IBM COBOL Routines on AIX” on page 183

Building IBM COBOL Applications on AIX

DB2 provides build scripts for compiling and linking COBOL embedded SQL
and DB2 API programs. These are located in the sqllib/samples/cobol
directory, along with sample programs that can be built with these files.

The build file, bldapp contains the commands to build a DB2 application
program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

To build the non-embedded SQL sample program client from the source file
client.cbl, enter:

bldapp client

The result is an executable file client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

180 Building and Running Applications



bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building IBM COBOL Routines on AIX” on page 183

Related reference:

v “AIX IBM COBOL Application Compile and Link Options” on page 182
v “COBOL Samples” on page 80

Related samples:

v “bldapp -- Builds AIX COBOL applications”
v “client.cbl -- How to set and query a client (IBM COBOL)”
v “embprep -- To prep and bind a COBOL embedded SQL sample on AIX”
v “updat.sqb -- How to update, delete and insert table data (IBM COBOL)”

Build Script for IBM COBOL Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds AIX COBOL applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqb" ]
then

./embprep $1 $2 $3 $4

Chapter 7. AIX 181



fi

# Compile the checkerr.cbl error checking utility.
cob2 -qpgmname\(mixed\) -qlib -I$DB2PATH/include/cobol_a \

-c checkerr.cbl

# Compile the program.
cob2 -qpgmname\(mixed\) -qlib -I$DB2PATH/include/cobol_a \

-c $1.cbl

# Link the program.
cob2 -o $1 $1.o checkerr.o -L$DB2PATH/lib -ldb2

AIX IBM COBOL Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL embedded SQL and DB2 API applications with the AIX IBM
COBOL Set compiler, as demonstrated in the bldapp build script.

Compile and Link Options for bldapp

Compile Options:

cob2 The IBM COBOL Set compiler.

-qpgmname\(mixed\)
Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.

-I$DB2PATH/include/cobol_a
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include/cobol_a.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

cob2 Use the compiler as a front end for the linker.

-o $1 Specify the executable program.

$1.o Specify the program object file.

checkerr.o
Include the utility object file for error-checking.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

182 Building and Running Applications



Related tasks:

v “Building IBM COBOL Applications on AIX” on page 180

Related reference:

v “AIX IBM COBOL Routine Compile and Link Options” on page 185

Related samples:

v “bldapp -- Builds AIX COBOL applications”

Building IBM COBOL Routines on AIX

DB2 provides build scripts for compiling and linking COBOL embedded SQL
and DB2 API programs. These are located in the sqllib/samples/cobol
directory, along with sample programs that can be built with these files.

The script, bldrtn, in sqllib/samples/cobol, contains the commands to build
routines (stored procedures). The script compiles the routines into a shared
library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the shared library must be built on the same instance where the
database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. The script uses the
source file name, $1, for the shared library name. Database name is optional.
If no database name is supplied, the program uses the default sample
database.

Procedure:

To build the sample program outsrv from the source file outsrv.sqb,
connecting to the sample database, enter:

bldrtn outsrv

If connecting to another database, also include the database name:
bldrtn outsrv database

The script file copies the shared library to the server in the path
sqllib/function.

Once you build the routine shared library, outsrv, you can build the client
application, outcli, that calls the routine within the library. You can build
outcli using the script file bldapp.

Chapter 7. AIX 183



To call the routine, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, outsrv, and executes the
routine of the same name on the server database, and then returns the output
to the client application.

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building IBM COBOL Applications on AIX” on page 180

Related reference:

v “AIX IBM COBOL Routine Compile and Link Options” on page 185
v “COBOL Samples” on page 80

Related samples:

v “bldrtn -- Builds AIX COBOL routines (stored procedures)”
v “embprep -- To prep and bind a COBOL embedded SQL sample on AIX”
v “outcli.sqb -- Call stored procedures using the SQLDA structure (IBM

COBOL)”
v “outsrv.sqb -- Demonstrates stored procedures using the SQLDA structure

(IBM COBOL)”

Build Script for IBM COBOL Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds AIX COBOL routines (stored procedures)
# Usage: bldrtn <program_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# Precompile and bind the program.

184 Building and Running Applications



./embprep $1 $2

# Compile the checkerr.cbl error checking utility.
cob2 -qpgmname\(mixed\) -qlib -I$DB2PATH/include/cobol_a \

-c checkerr.cbl

# Compile the program.
cob2 -qpgmname\(mixed\) -qlib -c -I$DB2PATH/include/cobol_a $1.cbl

# Link the program creating shared library $1 with export file $1.exp
cob2 -o $1 $1.o checkerr.o -bnoentry -bE:$1.exp \

-L$DB2PATH/lib -ldb2

# Copy the shared library to the sqllib/function directory of the DB2 instance.
# This assumes the user has write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

AIX IBM COBOL Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL routines (stored procedures) with the IBM COBOL Set
compiler on AIX, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:

cob2 The IBM COBOL Set compiler.

-qpgmname\(mixed\)
Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-I$DB2PATH/include/cobol_a
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include/cobol_a.

Chapter 7. AIX 185



Compile and Link Options for bldrtn

Link Options:

cob2 Use the compiler to link edit.

-o $1 Specify the output as a shared library file.

$1.o Specify the stored procedure object file.

checkerr.o
Include the utility object file for error-checking.

-bnoentry
Do not specify the default entry point to the shared library.

-bE:$1.exp
Specify an export file. The export file contains a list of the stored procedures.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building IBM COBOL Routines on AIX” on page 183

Related reference:

v “AIX IBM COBOL Application Compile and Link Options” on page 182

Related samples:

v “bldrtn -- Builds AIX COBOL routines (stored procedures)”

Micro Focus COBOL

Configuring the Micro Focus COBOL Compiler on AIX

Do the following if you develop applications that contain embedded SQL and
DB2 API calls with the Micro Focus COBOL compiler.

Procedure:

v When you precompile your application using the command line processor
command db2 prep, use the target mfcob option.

v You must include the DB2 COBOL COPY file directory in the Micro Focus
COBOL environment variable COBCPY. The COBCPY environment variable

186 Building and Running Applications



specifies the location of the COPY files. The DB2 COPY files for Micro
Focus COBOL reside in sqllib/include/cobol_mf under the database
instance directory.
To include the directory, enter:
– On bash or Korn shell:

export COBCPY=$COBCPY:$HOME/sqllib/include/cobol_mf

– On C shell:
setenv COBCPY $COBCPY:$HOME/sqllib/include/cobol_mf

Note: You might want to set COBCPY in the .profile or .login file.

Related concepts:

v “Considerations for Installing COBOL on AIX” on page 149

Related tasks:

v “Setting Up the UNIX Application Development Environment” on page 25
v “Building Micro Focus COBOL Applications on AIX” on page 187
v “Building Micro Focus COBOL Routines on AIX” on page 190

Building Micro Focus COBOL Applications on AIX

DB2 provides build scripts for compiling and linking Micro Focus COBOL
embedded SQL and DB2 API programs. These are located in the
sqllib/samples/cobol_mf directory, along with sample programs that can be
built with these files.

The build file, bldapp contains the commands to build a DB2 application
program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

Chapter 7. AIX 187



To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

The result is an executable file client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Related concepts:

v “Build Files” on page 94

Related tasks:

v “Building Micro Focus COBOL Routines on AIX” on page 190

Related reference:

188 Building and Running Applications



v “AIX Micro Focus COBOL Application Compile and Link Options” on page
189

v “COBOL Samples” on page 80

Related samples:

v “bldapp -- Builds AIX Micro Focus COBOL applications”
v “client.cbl -- How to set and query a client (MF COBOL)”
v “updat.sqb -- How to update, delete and insert table data (MF COBOL)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for Micro Focus COBOL Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds AIX Micro Focus COBOL applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqb" ]
then

embprep $1 $2 $3 $4
fi

# Set COBCPY to include the DB2 COPY files directory.
COBCPY=$COBCPY:$DB2PATH/include/cobol_mf

# Compile the checkerr.cbl error checking utility.
cob -c -x checkerr.cbl

# Compile the program.
cob -c -x $1.cbl

# Link the program.
cob -x -o $1 $1.o checkerr.o -L$DB2PATH/lib -ldb2 -ldb2gmf

AIX Micro Focus COBOL Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL embedded SQL and DB2 API applications with the Micro
Focus COBOL compiler on AIX, as demonstrated in the bldapp build script.

Chapter 7. AIX 189



Compile and Link Options for bldapp

Compile Options:

cob The COBOL compiler.

-c Perform compile only; no link.

-x When used with -c, produces an object file.

Link Options:

cob Use the compiler as a front end for the linker.

-x Produces an executable program.

-o $1 Specify the executable program.

$1.o Specify the program object file.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link to the DB2 library.

-ldb2gmf
Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building Micro Focus COBOL Applications on AIX” on page 187

Related reference:

v “AIX Micro Focus COBOL Routine Compile and Link Options” on page 192

Related samples:

v “bldapp -- Builds AIX Micro Focus COBOL applications”

Building Micro Focus COBOL Routines on AIX

DB2 provides build scripts for compiling and linking Micro Focus COBOL
embedded SQL and DB2 API programs. These are located in the
sqllib/samples/cobol_mf directory, along with sample programs that can be
built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures). The script compiles the routine source file into a shared library
that can be called by a client application.

190 Building and Running Applications



The first parameter, $1, specifies the name of your source file. The script uses
the source file name for the shared library name. The second parameter, $2,
specifies the name of the database to which you want to connect. Since the
shared library must be built in the same instance where the database resides,
there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

Procedure:

To build the sample program outsrv from the source file outsrv.sqb, if
connecting to the sample database, enter:

bldrtn outsrv

If connecting to another database, also enter the database name:
bldrtn outsrv database

The script file copies the shared library to the server in the path
sqllib/function.

Once you build the stored procedure outsrv, you can build the client
application outcli that calls it. You can build outcli using the script file,
bldapp.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, outsrv, and executes the
stored procedure function of the same name on the server database. The
output is then returned to the client application.

Related concepts:

v “Build Files” on page 94

Chapter 7. AIX 191



Related tasks:

v “Building Micro Focus COBOL Applications on AIX” on page 187

Related reference:

v “AIX Micro Focus COBOL Routine Compile and Link Options” on page 192
v “COBOL Samples” on page 80

Related samples:

v “bldrtn -- Builds AIX Micro Focus COBOL routines (stored procedures)”
v “outcli.sqb -- Call stored procedures using the SQLDA structure (MF

COBOL)”
v “outsrv.sqb -- Demonstrates stored procedures using the SQLDA structure

(MF COBOL)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for Micro Focus COBOL Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds AIX Micro Focus COBOL routines (stored procedures)
# Usage: bldrtn <program_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# Precompile and bind the program.
./embprep $1 $2

# Set COBCPY to include the DB2 COPY files directory.
COBCPY=$COBCPY:$DB2PATH/include/cobol_mf

# Compile the program.
cob -c -x $1.cbl

# Link the program.
cob -x -o $1 $1.o -Q -bnoentry \

-Q -bI:$DB2PATH/lib/db2g.imp -L$DB2PATH/lib -ldb2 -ldb2gmf

# Copy the shared library to the sqllib/function subdirectory.
# Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

AIX Micro Focus COBOL Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL routines (stored procedures) with the Micro Focus COBOL
compiler on AIX, as demonstrated in the bldrtn build script.

192 Building and Running Applications



Compile and Link Options for bldrtn

Compile Options:

cob The COBOL compiler.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-x Compile to an object module when used with the -c option.

Link Options:

cob Use the compiler as a front-end for the linker.

-x Produce a shared library.

-o $1 Specify the executable program.

$1.o Specify the program object file.

-Q -bnoentry
Do not specify the default entry point to the shared library.

-Q -bI:$DB2PATH/lib/db2g.imp
Provides a list of entry points to the DB2 application library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link to the DB2 library.

-ldb2gmf
Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building Micro Focus COBOL Routines on AIX” on page 190

Related reference:

v “AIX Micro Focus COBOL Application Compile and Link Options” on page
189

Related samples:

v “bldrtn -- Builds AIX Micro Focus COBOL routines (stored procedures)”

Chapter 7. AIX 193



REXX

Building REXX Applications on AIX

The following shows you how to build REXX applications on AIX. DB2 for
AIX supports classic REXX as well as Object REXX. Object REXX is an
object-oriented version of the REXX language. Object-oriented extensions have
been added to classic REXX, but its existing functions and instructions have
not changed. The Object REXX interpreter is an enhanced version of its
predecessor, with additional support for:
v Classes, objects, and methods
v Messaging and polymorphism
v Single and multiple inheritance

Object REXX is fully compatible with classic REXX. In this section, whenever
we refer to REXX, we are referring to all versions of REXX, including Object
REXX.

You do not precompile or bind REXX programs.

Procedure:

To run DB2 REXX/SQL programs on AIX, you must set the LIBPATH
environment variable to include lib under the DB2 install directory.

For bash or Korn shell, enter:
export LIBPATH=$LIBPATH:/lib:/usr/lib:/usr/opt/db2_08_01/lib

For C shell, enter:
setenv LIBPATH $LIBPATH:/lib:/usr/lib:/usr/opt/db2_08_01/lib

On AIX, your application file can have any file extension. You can run your
application using either of the following two methods:
1. At the shell command prompt, enter rexx name where name is the name of

your REXX program (including an extension, if one exists).
2. If the first line of your REXX program contains a ″magic number″, (#!),

and identifies the directory where the REXX/6000 interpreter resides, you
can run your REXX program by entering its name at the shell command
prompt. For example, if the REXX/6000 interpreter file is in the /usr/bin
directory, include the following as the very first line of your REXX
program:
#! /usr/bin/rexx

Then, make the program executable by entering the following command at
the shell command prompt:

194 Building and Running Applications



chmod +x name

Run your REXX program by entering its file name at the shell command
prompt.

REXX sample programs are in the directory sqllib/samples/rexx. To run the
sample REXX program updat.cmd, enter:

updat.cmd

Related tasks:

v “Setting Up the UNIX Application Development Environment” on page 25

Related reference:

v “REXX Samples” on page 91

Chapter 7. AIX 195



196 Building and Running Applications



Chapter 8. HP-UX

HP-UX C . . . . . . . . . . . . 197
Building C Applications on HP-UX . . . 197
Build Script for C Applications . . . . 199
HP-UX C Application Compile and Link
Options . . . . . . . . . . . . 200
Building C Routines on HP-UX . . . . 201
Build Script for C Routines . . . . . 205
HP-UX C Routine Compile and Link
Options . . . . . . . . . . . . 206
Building C Multi-Threaded Applications
on HP-UX . . . . . . . . . . . 207
Build Script for C Multi-threaded
Applications . . . . . . . . . . 208

HP-UX C++. . . . . . . . . . . . 209
Building C++ Applications on HP-UX . . 209
Build Script for C++ Applications . . . 211
HP-UX C++ Application Compile and
Link Options . . . . . . . . . . 212
Building C++ Routines on HP-UX . . . 213
Build Script for C++ Routines. . . . . 217
HP-UX C++ Routine Compile and Link
Options . . . . . . . . . . . . 218

Building C++ Multi-Threaded
Applications on HP-UX . . . . . . . 219
Build Script for C++ Multi-threaded
Applications . . . . . . . . . . 220

Micro Focus COBOL . . . . . . . . . 221
Configuring the Micro Focus COBOL
Compiler on HP-UX . . . . . . . . 221
Building Micro Focus COBOL
Applications on HP-UX . . . . . . . 222
Build Script for Micro Focus COBOL
Applications . . . . . . . . . . 224
HP-UX Micro Focus COBOL Application
Compile and Link Options . . . . . . 225
Building Micro Focus COBOL Routines
on HP-UX . . . . . . . . . . . 226
Build Script for Micro Focus COBOL
Routines . . . . . . . . . . . . 227
HP-UX Micro Focus COBOL Routine
Compile and Link Options . . . . . . 228

This chapter provides detailed information for building DB2 applications on
HP-UX. For the latest DB2 application development updates for HP-UX, visit
the DB2 application development Web page at:

http://www.ibm.com/software/data/db2/udb/ad

HP-UX C

Building information for DB2 CLI Applications and routines is in the CLI
Guide and Reference.

Building C Applications on HP-UX

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The build script, bldapp, contains the commands to build a DB2 application
program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do

© Copyright IBM Corp. 1993 - 2002 197

http://www.ibm.com/software/data/db2/udb/ad


not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the DB2 API non-embedded SQL sample program, cli_info, from
the source file cli_info.c, enter:

bldapp cli_info

The result is an executable file, cli_info.

To run the executable file, enter the executable name:
cli_info

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
source file tbmod.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file, tbmod.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:

198 Building and Running Applications



tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “HP-UX C Application Compile and Link Options” on page 200

Related samples:

v “bldapp -- Builds HP-UX C applications”
v “cli_info.c -- Set and get information at the client level (C)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “tbmod.sqc -- How to modify table data (C)”

Build Script for C Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds HP-UX C applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG="+DA2.0W"
else

EXTRA_CFLAG="+DAportable"
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2 $3 $4
# Compile the utilemb.c error-checking utility.
cc $EXTRA_CFLAG -Ae -I$DB2PATH/include -c utilemb.c

Chapter 8. HP-UX 199



else
# Compile the utilapi.c error-checking utility.
cc $EXTRA_CFLAG -Ae -I$DB2PATH/include -c utilapi.c

fi

# Compile the program.
cc $EXTRA_CFLAG -Ae -I$DB2PATH/include -c $1.c

if [ -f $1".sqc" ]
then

# Link the program with utilemb.o.
cc $EXTRA_CFLAG -o $1 $1.o utilemb.o -L$DB2PATH/lib -ldb2

else
# Link the program with utilapi.o.
cc $EXTRA_CFLAG -o $1 $1.o utilapi.o -L$DB2PATH/lib -ldb2

fi

HP-UX C Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C embedded SQL and DB2 API applications with the HP-UX C
compiler, as demonstrated in the bldapp build script.

Compile and Link Options for bldapp

Compile Options:
cc The C compiler.
$EXTRA_CFLAG

Contains different values depending on whether 32-bit or 64-bit support is
enabled. For 32-bit, the value is +DAportable; for 64-bit, the value is +DA2.0W.

+DAportable (32-bit only)
Generates code compatible across PA_RISC 1.x and 2.0 workstations and
servers. This option should be used if the application’s portability is a
concern. Building without this option will generate code better optimized for
the processor level of the building machine, but won’t work on older
PA-RISC processor levels. See the compiler documentation for more
information.

+DA2.0W (64-bit only)
Must be used to generate 64-bit code.

-Ae Enables HP ANSI extended mode.
-I$DB2PATH/include

Specifies the location of the DB2 include files.
-c Perform compile only; no link. Compile and link are separate steps.

200 Building and Running Applications



Compile and Link Options for bldapp

Link Options:
cc Use the compiler as a front end to the linker.
$EXTRA_CFLAG

Contains different values depending on whether 32-bit or 64-bit support is
enabled. For 32-bit, the value is +DAportable; for 64-bit, the value is +DA2.0W.

+DAportable (32-bit only)
Use code compatible across PA_RISC 1.x and 2.0 workstations and servers.
This option should be used if the application’s portability is a concern.
Building without this option will generate code better optimized for the
processor level of the building machine, but won’t work on older PA-RISC
processor levels. See the compiler documentation for more information.

+DA2.0W (64-bit only)
Must be used to generate 64-bit code.

-o $1 Specify the executable.
$1.o Specify the program object file.
utilemb.o

If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
-L$DB2PATH/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C Applications on HP-UX” on page 197

Related samples:

v “bldapp -- Builds HP-UX C applications”

Building C Routines on HP-UX

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script file bldrtn contains the commands to build routines (stored
procedures and user-defined functions). The script file compiles the routines
into a shared library that can be loaded by the database manager and called
by a client application.

Chapter 8. HP-UX 201



The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect.

The database parameter is optional. If no database name is supplied, the
program uses the default sample database. And since the stored procedure
must be built on the same instance where the database resides, there are no
parameters for user ID and password.

Procedure:

The following examples show you how to build routine shared libraries with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure Shared Library

To build the sample program spserver from the source file spserver.sqc:
1. If connecting to the sample database, enter the build file name and the

program name:
bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

The script file copies the shared library to the server in the path
sqllib/function.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by
calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new shared library to be
recognized.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library.

You can build spclient by using the script file, bldapp.

202 Building and Running Applications



To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Non-embedded SQL UDF Shared Library

To build the user-defined function program, udfsrv, from the source file
udfsrv.c, enter the build script name and the program name:

bldrtn udfsrv

The script file copies the UDF to the sqllib/function directory.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided. You
can build the DB2 CLI udfcli client program from the source file udfcli.c, in
sqllib/samples/cli, using the script file bldapp.

You can build the embedded SQL udfcli client program from the source file
udfcli.sqc, in sqllib/samples/c, using the script file bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

Chapter 8. HP-UX 203



password
Is a valid password.

The client application accesses the shared library, udfsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Embedded SQL UDF Shared Library

To build the embedded SQL user-defined function program, udfemsrv, from
the source file udfemsrv.sqc, if connecting to the sample database, enter the
build script name and program name:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The script file copies the UDF library to the sqllib/function directory.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build the udfemcli client program from the source file
udfemcli.sqc, in sqllib/samples/c, using the script file bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, udfemsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69

204 Building and Running Applications



v “HP-UX C Routine Compile and Link Options” on page 206

Related samples:

v “bldrtn -- Builds HP-UX C routines (stored procedures and UDFs)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “spcat -- To catalog C stored procedures on UNIX”
v “spclient.sqc -- Call various stored procedures (C)”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”
v “spserver.sqc -- A variety of types of stored procedures (C)”
v “udfcli.sqc -- Call a variety of types of user-defined functions (C)”
v “udfemcli.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfemsrv.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfsrv.c -- Call a variety of types of user-defined functions (C)”

Build Script for C Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds HP-UX C routines (stored procedures and UDFs)
# Usage: bldrtn <prog_name> [ <db_name> ]

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG="+DA2.0W"
else

EXTRA_CFLAG="+DAportable"
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2
fi

# Compile the program.
cc $EXTRA_CFLAG +u1 +z -Ae -I$DB2PATH/include \

Chapter 8. HP-UX 205



-D_POSIX_C_SOURCE=199506L -c $1.c

# Link the program to create a shared library
ld -b -o $1 $1.o -L$DB2PATH/lib -ldb2 -lpthread

# Copy the shared library to the sqllib/function subdirectory.
# Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

HP-UX C Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C routines (stored procedures and user-defined functions) with the
HP-UX C compiler, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:
cc The C compiler.
$EXTRA_CFLAG

Contains different values depending on whether 32-bit or 64-bit support is
enabled. For 32-bit, the value is +DAportable; for 64-bit, the value is +DA2.0W.

+DAportable (32-bit only)
Generates code compatible across PA_RISC 1.x and 2.0 workstations and
servers. This option should be used if the application’s portability is a
concern. Building without this option will generate code better optimized for
the processor level of the building machine, but won’t work on older
PA-RISC processor levels. See the compiler documentation for more
information.

+DA2.0W (64-bit only)
Must be used to generate 64-bit code.

+u1 Allow unaligned data access. Use only if your application uses unaligned
data.

+z Generate position-independent code.
-Ae Enables HP ANSI extended mode.
-I$DB2PATH/include

Specify the location of the DB2 include files. For example:
-I$DB2PATH/include.

-D_POSIX_C_SOURCE=199506L
POSIX thread library option that ensures _REENTRANT is defined, needed
as the routines may run in the same process as other routines
(THREADSAFE) or in the engine itself (NOT FENCED).

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

206 Building and Running Applications



Compile and Link Options for bldrtn

Link Options:
ld Use the linker to link.
-b Create a shared library rather than a normal executable.
-o $1 Specify the output as a shared library file.
$1.o Specify the program object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.
-lpthread

Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C Routines on HP-UX” on page 201

Related samples:

v “bldrtn -- Builds HP-UX C routines (stored procedures and UDFs)”

Building C Multi-Threaded Applications on HP-UX

HP-UX provides a POSIX thread library and a DCE thread library. Only
multi-threaded applications using the POSIX thread library are supported by
DB2.

Multi-threaded applications on HP-UX need to have _REENTRANT defined
for their compilation. The HP-UX documentation recommends compiling with
-D_POSIX_C_SOURCE=199506L. This will also ensure _REENTRANT is
defined. Applications also need to be linked with -lpthread.

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script file, bldmt contains the commands to build multi-threaded
applications. It takes up to four parameters, represented by the variables $1,
$2, $3, and $4.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is

Chapter 8. HP-UX 207



required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.

Procedure:

To build the sample program, dbthrds, from the source file dbthrds.sqc, enter:
bldmt dbthrds

The result is an executable file, dbthrds. To run the executable file against the
sample database, enter the executable name:

dbthrds

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69

Related samples:

v “bldmt -- Builds HP-UX C multi-threaded applications”
v “dbthrds.sqc -- How to use multiple context APIs on UNIX (C)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C Multi-threaded Applications
#! /bin/sh
# SCRIPT: bldmt
# Builds HP-UX C multi-threaded applications
# Usage: bldmt <prog_name> [ <db_name> [ <userid> <password> ]]

# To compile 64-bit programs, uncomment the following line.
# BUILD_64BIT=true

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG="+DA2.0W"
else

EXTRA_CFLAG="+DAportable"
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2 $3 $4

208 Building and Running Applications



fi

# Compile the program.
cc $EXTRA_CFLAG -Ae -I$DB2PATH/include -D_POSIX_C_SOURCE=199506L -c $1.c

# Link the program
cc $EXTRA_CFLAG -o $1 $1.o -L$DB2PATH/lib -ldb2 -lpthread

HP-UX C++

Building C++ Applications on HP-UX

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

The build script, bldapp, contains the commands to build DB2 API and
embedded SQL applications. The script takes up to four parameters.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the non-embedded SQL sample program cli_info from the source
file cli_info.C, enter:

bldapp cli_info

The result is an executable file, cli_info. You can run the executable file
against the sample database by entering:

cli_info

Chapter 8. HP-UX 209



Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
source file tbmod.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file, tbmod.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “HP-UX C++ Application Compile and Link Options” on page 211

Related samples:

v “bldapp -- Builds HP-UX C++ applications”
v “cli_info.C -- Set and get information at the client level (C++)”
v “tbmod.sqC -- How to modify table data (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

210 Building and Running Applications



Build Script for C++ Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds HP-UX C++ applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG="+DA2.0W"
else

EXTRA_CFLAG="+DAportable"
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2 $3 $4
# Compile the utilemb.C error-checking utility.
aCC $EXTRA_CFLAG -ext -I$DB2PATH/include -c utilemb.C

else
# Compile the utilapi.C error-checking utility.
aCC $EXTRA_CFLAG -ext -I$DB2PATH/include -c utilapi.C

fi

# Compile the program.
aCC $EXTRA_CFLAG -ext -I$DB2PATH/include -c $1.C

if [ -f $1".sqC" ]
then

# Link the program with utilemb.o.
aCC $EXTRA_CFLAG -o $1 $1.o utilemb.o -L$DB2PATH/lib -ldb2

else
# Link the program with utilapi.o.
aCC $EXTRA_CFLAG -o $1 $1.o utilapi.o -L$DB2PATH/lib -ldb2

fi

HP-UX C++ Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C++ embedded SQL and DB2 API applications with the HP-UX C++
compiler, as demonstrated in the bldapp build script.

Chapter 8. HP-UX 211



Compile and Link Options for bldapp

Compile Options:
aCC The HP aC++ compiler.
$EXTRA_CFLAG

Contains different values depending on whether 32-bit or 64-bit support is
enabled. For 32-bit, the value is +DAportable; for 64-bit, the value is +DA2.0W.

+DAportable (32-bit only)
Generates code compatible across PA_RISC 1.x and 2.0 workstations and
servers. This option should be used if the application’s portability is a
concern. Building without this option will generate code better optimized for
the processor level of the building machine, but won’t work on older
PA-RISC processor levels. See the compiler documentation for more
information.

+DA2.0W (64-bit only)
Must be used to generate 64-bit code.

-ext Allow various C++ extensions including ″long long″ support.
-I$DB2PATH/include

Specifies the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

212 Building and Running Applications



Compile and Link Options for bldapp

Link Options:
aCC Use the HP aC++ compiler as a front end for the linker.
$EXTRA_CFLAG

Contains different values depending on whether 32-bit or 64-bit support is
enabled. For 32-bit, the value is +DAportable; for 64-bit, the value is +DA2.0W.

+DAportable (32-bit only)
Use code compatible across PA_RISC 1.x and 2.0 workstations and servers.
This option should be used if the application’s portability is a concern.
Building without this option will generate code better optimized for the
processor level of the building machine, but won’t work on older PA-RISC
processor levels. See the compiler documentation for more information.

+DA2.0W (64-bit only)
Must be used to generate 64-bit code.

-o $1 Specify the executable.
$1.o Specify the program object file.
utilemb.o

If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C++ Applications on HP-UX” on page 209

Related samples:

v “bldapp -- Builds HP-UX C++ applications”

Building C++ Routines on HP-UX

DB2 provides build scripts for compiling and linking C++ embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures or user-defined functions). The script compiles the routines into a
shared library that can be called by a client application.

Chapter 8. HP-UX 213



The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect.

The database parameter is optional. If no database name is supplied, the
program uses the default sample database. And since the shared library must
be built on the same instance where the database resides, there are no
parameters for user ID and password.

Procedure:

The following examples show you how to build routine shared libraries with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure Shared Library

To build the sample program spserver from the source file spserver.sqC:
1. If connecting to the sample database, enter the build file name and

program name:
bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

The script copies the stored procedure to the server in the path
sqllib/function.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by
calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new shared library to be
recognized.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library.

You can build spclient by using the script file, bldapp.

To call the stored procedure, run the sample client application by entering:

214 Building and Running Applications



spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Non-embedded SQL UDF Shared Library

To build the user-defined function program, udfsrv, from the source file
udfsrv.C, enter the build script name and program name:

bldrtn udfsrv

The script file copies the UDF to the sqllib/function directory.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build udfcli from the source file udfcli.sqC using the script,
bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Embedded SQL UDF Shared Library

Chapter 8. HP-UX 215



To build the embedded SQL user-defined function program, udfemsrv, from
the source file udfemsrv.sqC, if connecting to the sample database, enter the
build script name and program name:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The script file copies the UDF to the sqllib/function directory.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build udfemcli from the source file, udfemcli.sqC, using the
script, bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfemsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “HP-UX C++ Routine Compile and Link Options” on page 218

Related samples:

v “bldrtn -- Builds HP-UX C++ routines (stored procedures and UDFs)”
v “spclient.sqC -- Call various stored procedures (C++)”
v “spserver.sqC -- A variety of types of stored procedures (C++)”
v “udfcli.sqC -- Call a variety of types of user-defined functions (C++)”

216 Building and Running Applications



v “udfemcli.sqC -- Call a variety of types of embedded SQL user-defined
functions. (C++)”

v “udfemsrv.sqC -- Call a variety of types of embedded SQL user-defined
functions. (C++)”

v “udfsrv.C -- Call a variety of types of user-defined functions (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “spcat -- To catalog C stored procedures on UNIX”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”

Build Script for C++ Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds HP-UX C++ routines (stored procedures and UDFs)
# Usage: bldsrv <prog_name> [ <db_name> ]

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG="+DA2.0W"
else

EXTRA_CFLAG="+DAportable"
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2
fi

# Compile the program. First ensure it is coded with extern "C".
aCC $EXTRA_CFLAG +u1 +z -ext -mt -I$DB2PATH/include -c $1.C

# Link the program to create a shared library.
aCC $EXTRA_CFLAG -mt -b -o $1 $1.o -L$DB2PATH/lib -ldb2

# Copy the shared library to the sqllib/function subdirectory.
# Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Chapter 8. HP-UX 217



HP-UX C++ Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C++ routines (stored procedures and user-defined functions) with the
HP-UX C++ compiler, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:
aCC The HP aC++ compiler.
$EXTRA_CFLAG

Contains different values depending on whether 32-bit or 64-bit support is
enabled. For 32-bit, the value is +DAportable; for 64-bit, the value is +DA2.0W.

+DAportable (32-bit only)
Generates code compatible across PA_RISC 1.x and 2.0 workstations and
servers. This option should be used if the application’s portability is a
concern. Building without this option will generate code better optimized for
the processor level of the building machine, but won’t work on older
PA-RISC processor levels. See the compiler documentation for more
information.

+DA2.0W (64-bit only)
Must be used to generate 64-bit code.

+u1 Allows unaligned data access.
+z Generate position-independent code.
-ext Allow various C++ extensions including ″long long″ support.
-mt Allows threads support for the HP aC++ compiler, needed as the routines

may run in the same process as other routines (THREADSAFE) or in the
engine itself (NOT FENCED).

-I$DB2PATH/include
Specify the location of the DB2 include files. For example: $DB2PATH/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

218 Building and Running Applications



Compile and Link Options for bldrtn

Link Options:
aCC Use the HP aC++ compiler as a front end for the linker.
$EXTRA_CFLAG

Contains different values depending on whether 32-bit or 64-bit support is
enabled. For 32-bit, the value is +DAportable; for 64-bit, the value is +DA2.0W.

+DAportable (32-bit only)
Use code compatible across PA_RISC 1.x and 2.0 workstations and servers.
This option should be used if the application’s portability is a concern.
Building without this option will generate code better optimized for the
processor level of the building machine, but won’t work on older PA-RISC
processor levels. See the compiler documentation for more information.

+DA2.0W (64-bit only)
Must be used to generate 64-bit code.

-mt Allows threads support for the HP aC++ compiler, needed as the routines
may run in the same process as other routines (THREADSAFE) or in the
engine itself (NOT FENCED).

-b Create a shared library rather than a normal executable.
-o $1 Specify the executable.
$1.o Specify the program object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries. For example:
-L$DB2PATH/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C++ Routines on HP-UX” on page 213

Related samples:

v “bldrtn -- Builds HP-UX C++ routines (stored procedures and UDFs)”

Building C++ Multi-Threaded Applications on HP-UX

HP-UX provides a POSIX thread library and a DCE thread library. Only
multi-threaded applications using the POSIX thread library are supported by
DB2 on HP-UX.

For the HP-UX C++ compiler, -mt must be used for multi-threaded
applications in both the compile and link steps.

DB2 provides build scripts for compiling and linking C++ embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

Chapter 8. HP-UX 219



The script, bldmt, contains the commands to build multi-threaded
applications. It takes up to four parameters, represented by the variables $1,
$2, $3, and $4.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.

Procedure:

To build the sample program, dbthrds, from the source file dbthrds.sqC, enter:
bldmt dbthrds

The result is an executable file, dbthrds. To run the executable file against the
sample database, enter the executable name:

dbthrds

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69

Related samples:

v “bldmt -- Builds HP-UX C++ multi-threaded applications”
v “dbthrds.sqC -- How to use multiple context APIs on UNIX (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C++ Multi-threaded Applications
#! /bin/sh
# SCRIPT: bldmt
# Builds HP-UX C++ multi-threaded applications
# Usage: bldmt <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true
if [ "$BUILD_64BIT" != "" ]
then

EXTRA_CFLAG="+DA2.0W"

220 Building and Running Applications



else
EXTRA_CFLAG="+DAportable"

fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2 $3 $4
fi

# Compile the program.
aCC $EXTRA_CFLAG -ext -mt -I$DB2PATH/include -c $1.C

# Link the program
aCC $EXTRA_CFLAG -mt -o $1 $1.o -L$DB2PATH/lib -ldb2

Micro Focus COBOL

Configuring the Micro Focus COBOL Compiler on HP-UX

If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the Micro Focus COBOL compiler, there are several points
to keep in mind.

Procedure:

v When you precompile your application using the command line processor
command db2 prep, use the target mfcob option.

v In order to use the built-in precompiler front-end, runtime interpreter or
Animator debugger, you have to add the DB2 Generic API entry points to
the Micro Focus runtime module rts32 by executing the mkrts command
provided by Micro Focus. You also need to run mkcheck to update the check
file. If this is not run, you will receive a 173 error in SQLGSTRT.
You have to run mkrts and mkcheck to set up your environment before
building your COBOL applications. Before running mkrts and mkcheck,
COBOPT must be set in the following steps:
1. Log in as root.
2. From the directory $COBDIR/src/rts enter:

COBOPT=/opt/IBM/db2/V8.1/lib/db2mkrts.args; export COBOPT
ksh mkrts
mv $COBDIR/rts32 $COBDIR/rts32.orig
cp rts32 $COBDIR/rts32

where $COBDIR is the directory where the COBOL compiler is installed,
normally /opt/cobol/cobdir.

3. You must also rebuild the check executable which Hewlett-Packard
ships with the product. If you do not rebuild the check executable
located in your $COBDIR directory, attempts to compile using cob -C SQL

Chapter 8. HP-UX 221



will fail with a run-time system 173 error because the DB2 pre-processor
calls the DB2 library. To rebuild check, you should change to the
src/sql directory under your $COBDIR directory as root and run the
mkcheck script. Once the script completes, you need to move the
resulting check executable to your $COBDIR directory. From the directory
$COBDIR/src/sql, enter:

COBOPT=/opt/IBM/db2/V8.1/lib/db2mkrts.args; export COBOPT
ksh mkcheck
mv $COBDIR/check $COBDIR/check.orig
cp check $COBDIR/check

Now you can execute mkrts with the arguments supplied in the following
directory:

/opt/IBM/db2/V8.1/lib/db2mkrts.args

v You must include the DB2 COBOL COPY file directory in the Micro Focus
COBOL environment variable COBCPY. The COBCPY environment variable
specifies the location of COPY files. The DB2 COPY files for Micro Focus
COBOL reside in sqllib/include/cobol_mf under the database instance
directory.
To include the directory,
– on bash or Korn shell, enter:

export COBCPY=$COBCPY:$HOME/sqllib/include/cobol_mf

– on C shell, enter:
setenv COBCPY ${COBCPY}:${HOME}/sqllib/include/cobol_mf

Note: You might want to set COBCPY in the .profile or .login file.

Related tasks:

v “Building Micro Focus COBOL Routines on HP-UX” on page 226
v “Building Micro Focus COBOL Applications on HP-UX” on page 222

Building Micro Focus COBOL Applications on HP-UX

DB2 provides build scripts for compiling and linking Micro Focus COBOL
embedded SQL and DB2 API programs. These are located in the
sqllib/samples/cobol_mf directory, along with sample programs that can be
built with these files.

The build script, bldapp, contains the commands to build a DB2 application
program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the

222 Building and Running Applications



name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

The result is an executable file client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

Chapter 8. HP-UX 223



updat database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “HP-UX Micro Focus COBOL Application Compile and Link Options” on
page 225

v “COBOL Samples” on page 80

Related samples:

v “bldapp -- Builds HP-UX Micro Focus COBOL applications”
v “client.cbl -- How to set and query a client (MF COBOL)”
v “updat.sqb -- How to update, delete and insert table data (MF COBOL)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for Micro Focus COBOL Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds HP-UX Micro Focus COBOL applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqb" ]
then

embprep $1 $2 $3 $4
fi

# Set COBCPY to include the DB2 COPY files directory.
COBCPY=$COBCPY:$DB2PATH/include/cobol_mf

# Compile the checkerr.cbl error checking utility.
cob +DAportable -cx checkerr.cbl

# Compile the program.
cob +DAportable -cx $1.cbl

# Link the program.
cob +DAportable -x $1.o checkerr.o -L$DB2PATH/lib -ldb2 -ldb2gmf

224 Building and Running Applications



HP-UX Micro Focus COBOL Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL embedded SQL and DB2 API applications with the Micro
Focus COBOL compiler on HP-UX, as demonstrated in the bldapp build
script.

Compile and Link Options for bldapp

Compile Options:
cob The Micro Focus COBOL compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations and
servers. This option should be used if the application’s portability is a
concern. Building without this option will generate code better optimized for
the processor level of the building machine, but won’t work on older
PA-RISC processor levels. See the compiler documentation for more
information.

-cx Compile to object module.

Link options:
cob Use the compiler as a front end for the linker.
+DAportable

Use code compatible across PA_RISC 1.x and 2.0 workstations and servers.
This option should be used if the application’s portability is a concern.
Building without this option will generate code better optimized for the
processor level of the building machine, but won’t work on older PA-RISC
processor levels. See the compiler documentation for more information.

-x Specify an executable program.
$1.o Include the program object file.
checkerr.o

Include the utility object file for error checking.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries.
-ldb2 Link to the DB2 library.
-ldb2gmf

Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building Micro Focus COBOL Applications on HP-UX” on page 222

Related samples:

v “bldapp -- Builds HP-UX Micro Focus COBOL applications”

Chapter 8. HP-UX 225



Building Micro Focus COBOL Routines on HP-UX

DB2 provides build scripts for compiling and linking Micro Focus COBOL
embedded SQL and DB2 API programs. These are located in the
sqllib/samples/cobol_mf directory, along with sample programs that can be
built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures). The script compiles the routines into a shared library on the
server that can be called by a client application. It takes one or two
parameters, represented inside bldrtn by the variables $1 and $2.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the shared library must be built on the same instance where the
database resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database. The script uses the source file name, $1, for the shared
library name.

Procedure:

To build the sample program outsrv from the source file outsrv.sqb, if
connecting to the sample database, enter:

bldrtn outsrv

If connecting to another database, also enter the database name:
bldrtn outsrv database

The script copies the shared library to the sqllib/function directory.

Once you build the shared library, outsrv, you can build the client application
outcli that calls the routine within it. You can build outcli using the script
file, bldapp.

To call the routine, run the client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

226 Building and Running Applications



userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, outsrv, which executes the
routine of the same name on the server database, and then returns the output
to the client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “HP-UX Micro Focus COBOL Routine Compile and Link Options” on page
228

v “COBOL Samples” on page 80

Related samples:

v “bldrtn -- Builds HP-UX Micro Focus COBOL routines (stored procedures)”
v “outcli.sqb -- Call stored procedures using the SQLDA structure (MF

COBOL)”
v “outsrv.sqb -- Demonstrates stored procedures using the SQLDA structure

(MF COBOL)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for Micro Focus COBOL Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds HP-UX Micro Focus COBOL routines (stored procedures)
# Usage: bldrtn <prog_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqb" ]
then

embprep $1 $2
fi

# Set COBCPY to include the DB2 COPY files directory.
COBCPY=$COBCPY:$DB2PATH/include/cobol_mf

# Compile the program.
cob +DAportable +z -cx $1.cbl

Chapter 8. HP-UX 227



# Link the program.
ld -b -o $1 $1.o -L$DB2PATH/lib -ldb2 -ldb2gmf \

-L$COBDIR/coblib -lcobol -lcrtn

# Copy the shared library to the sqllib/function subdirectory.
# The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

HP-UX Micro Focus COBOL Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL routines (stored procedures) with the Micro Focus COBOL
compiler on HP-UX, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:
cob The COBOL compiler.
+DAportable

Generates code compatible across PA_RISC 1.x and 2.0 workstations and
servers. This option should be used if the application’s portability is a
concern. Building without this option will generate code better optimized for
the processor level of the building machine, but won’t work on older
PA-RISC processor levels. See the compiler documentation for more
information.

+z Generate position-independent code.
-cx Compile to object module.

Link Options:
ld Use the linker to link.
-b Create a shared library rather than a normal executable file.
-o $1 Specify the executable.
$1.o Include the program object file.
-L$DB2PATH/lib

Specify the location of the DB2 runtime shared libraries.
-ldb2 Link to the DB2 shared library.
-ldb2gmf

Link to the DB2 exception-handler library for Micro Focus COBOL.
-L$COBDIR/coblib

Specify the location of the COBOL runtime libraries.
-lcobol

Link to the COBOL library.
-lcrtn Link to the crtn library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building Micro Focus COBOL Routines on HP-UX” on page 226

228 Building and Running Applications



Related samples:

v “bldrtn -- Builds HP-UX Micro Focus COBOL routines (stored procedures)”

Chapter 8. HP-UX 229



230 Building and Running Applications



Chapter 9. Linux

Linux C . . . . . . . . . . . . . 231
Building C Applications on Linux . . . 231
Build Script for C Applications . . . . 233
Linux C Application Compile and Link
Options . . . . . . . . . . . . 234
Building C Routines on Linux. . . . . 235
Build Script for C Routines . . . . . 239
Linux C Routine Compile and Link
Options . . . . . . . . . . . . 240
Building C Multi-Threaded Applications
on Linux . . . . . . . . . . . . 241
Build Script for C Multi-threaded
Applications . . . . . . . . . . 242

Linux C++ . . . . . . . . . . . . 242
Building C++ Applications on Linux . . 242
Build Script for C++ Applications . . . 244
Linux C++ Application Compile and Link
Options . . . . . . . . . . . . 245
Building C++ Routines on Linux . . . . 246
Build Script for C++ Routines. . . . . 250
Linux C++ Routine Compile and Link
Options . . . . . . . . . . . . 251
Building C++ Multi-Threaded
Applications on Linux . . . . . . . 252
Build Script for C++ Multi-threaded
Applications . . . . . . . . . . 252

This chapter provides detailed information for building applications on Linux.
For the latest DB2 application development updates for Linux, visit the Web
page at:

http://www.ibm.com/software/data/db2/udb/ad

Linux C

Building information for DB2 CLI Applications and routines is in the CLI
Guide and Reference.

Building C Applications on Linux

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The build file, bldapp contains the commands to build a DB2 application
program.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the

© Copyright IBM Corp. 1993 - 2002 231

http://www.ibm.com/software/data/db2/udb/ad


default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the DB2 API non-embedded SQL sample program, cli_info, from
the source file cli_info.c, enter:

bldapp cli_info

The result is an executable file, cli_info.

To run the executable file, enter the executable name:
cli_info

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
source file tbmod.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file, tbmod.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

232 Building and Running Applications



Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “Linux C Application Compile and Link Options” on page 234

Related samples:

v “bldapp -- Builds Linux C applications”
v “cli_info.c -- Set and get information at the client level (C)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “tbmod.sqc -- How to modify table data (C)”

Build Script for C Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds Linux C applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To specify a runtime path for shared libraries, uncomment the
# following line (usually only needed for setuid applications).
# RUNTIME=true

if [ "$RUNTIME" != "" ]
then

EXTRA_LFLAG="-Wl,-rpath$DB2PATH/lib"
else

EXTRA_LFLAG=""
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2 $3 $4
# Compile the utilemb.c error-checking utility.
gcc -I$DB2PATH/include -c utilemb.c

else
# Compile the utilapi.c error-checking utility.
gcc -I$DB2PATH/include -c utilapi.c

fi

# Compile the program.
gcc -I$DB2PATH/include -c $1.c

if [ -f $1".sqc" ]

Chapter 9. Linux 233



then
# Link the program with utilemb.o.
gcc -o $1 $1.o utilemb.o $EXTRA_LFLAG \

-L$DB2PATH/lib -ldb2
else

# Link the program with utilapi.o.
gcc -o $1 $1.o utilapi.o $EXTRA_LFLAG \

-L$DB2PATH/lib -ldb2
fi

Linux C Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C embedded SQL and DB2 API applications with the Linux C
compiler, as demonstrated in the bldapp build script.

Compile and Link Options for bldapp

Compile Options:

gcc The GNU/Linux C compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files.

-c Perform compile only; no link. This script file has separate compile and link
steps.

234 Building and Running Applications



Compile and Link Options for bldapp

Link options:

gcc Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Specify the object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

$EXTRA_LFLAG
If ’RUNTIME=true’ is uncommented, contains value ″-Wl,-
rpath,$DB2PATH/lib″; otherwise, contains no value.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-L$DB2PATH/lib
Specify the location of the DB2 shared libraries at link-time. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C Applications on Linux” on page 231

Related samples:

v “bldapp -- Builds Linux C applications”

Building C Routines on Linux

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures or user-defined functions). The script file compiles the routines
into a shared library that can be called by a client application.

Chapter 9. Linux 235



The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect.

The database parameter is optional. If no database name is supplied, the
program uses the default sample database. And since the stored procedure
must be built on the same instance where the database resides, there are no
parameters for user ID and password.

Procedure:

The following examples show you how to build routine shared libraries with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure Shared Library

To build the sample program spserver from the source file spserver.sqc:
1. If connecting to the sample database, enter the build script name and

program name:
bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

The script copies the stored procedure to the server in the path
sqllib/function.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by
calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new shared library to be
recognized.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library.

You can build spclient by using the script, bldapp.

To call the stored procedure, run the sample client application by entering:

236 Building and Running Applications



spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Non-embedded SQL UDF Shared Library

To build the user-defined function program, udfsrv, from the source file
udfsrv.c, enter the build script name and program name:

bldrtn udfsrv

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the database manager can access
it.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build udfcli from the source file udfcli.sqc using the script file
bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

Chapter 9. Linux 237



The client application accesses the shared library, udfsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Embedded SQL UDF Shared Library

To build the embedded SQL user-defined function program, udfemsrv, from
the source file udfemsrv.sqc, if connecting to the sample database, enter the
build script name and program name:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The script file copies the UDF library to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application database
manager can access it.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build the udfemcli client program from the source file
udfemcli.sqc, in sqllib/samples/c, using the script file bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password.

The client application accesses the shared library, udfemsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69

238 Building and Running Applications



v “Linux C Routine Compile and Link Options” on page 240

Related samples:

v “bldrtn -- Builds Linux C routines (stored procedures or UDFs)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “spcat -- To catalog C stored procedures on UNIX”
v “spclient.sqc -- Call various stored procedures (C)”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”
v “spserver.sqc -- A variety of types of stored procedures (C)”
v “udfcli.sqc -- Call a variety of types of user-defined functions (C)”
v “udfemcli.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfemsrv.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfsrv.c -- Call a variety of types of user-defined functions (C)”

Build Script for C Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds Linux C routines (stored procedures or UDFs)
# Usage: bldrtn <prog_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# Set the runtime path since routines run as setuid.
EXTRA_LFLAG="-Wl,-rpath$DB2PATH/lib"

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2
fi

# Compile the program.
gcc -fpic -I$DB2PATH/include -c $1.c -D_REENTRANT

# Link the program and create a shared library
gcc -shared -o $1 $1.o $EXTRA_LFLAG -L$DB2PATH/lib -ldb2 -lpthread

Chapter 9. Linux 239



# Copy the shared library to the function subdirectory.
# The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Linux C Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C routines (stored procedures and user-defined functions) with the
Linux C compiler, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:

gcc The GNU/Linux C compiler.

-fpic Generate position independent code.

-I$DB2PATH/include
Specify the location of the DB2 include files.

-c Perform compile only; no link. This script file has separate compile and link
steps.

-D_REENTRANT
Defines _REENTRANT, needed as the routines may run in the same process
as other routines (THREADSAFE) or in the engine itself (NOT FENCED).

Link Options:

gcc Use the compiler as a front end for the linker.

-shared
Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

$EXTRA_LFLAG
Contains the value ″-Wl,-rpath,$DB2PATH/lib″ to set the runtime path since
routines run as setuid.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-L$DB2PATH/lib
Specify the location of the DB2 shared libraries at link-time. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

-lpthread
Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

240 Building and Running Applications



Related tasks:

v “Building C Routines on Linux” on page 235

Related samples:

v “bldrtn -- Builds Linux C routines (stored procedures or UDFs)”

Building C Multi-Threaded Applications on Linux

Multi-threaded applications using Linux C need to be compiled with
-D_REENTRANT and linked with -lpthread.

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script, bldmt, contains the commands to build multi-threaded
applications.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.

Procedure:

To build the sample program, dbthrds, from the source file dbthrds.sqc, enter:
bldmt dbthrds

The result is an executable file, dbthrds. To run the executable file against the
sample database, enter:

dbthrds

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69

Related samples:

v “bldmt -- Builds Linux C multi-threaded applications”
v “dbthrds.sqc -- How to use multiple context APIs on UNIX (C)”

Chapter 9. Linux 241



v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded
SQL programs”

Build Script for C Multi-threaded Applications
#! /bin/sh
# SCRIPT: bldmt
# Builds Linux C multi-threaded applications
# Usage: bldmt <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To specify a runtime path for shared libraries, uncomment the
# following line (usually only needed for setuid applications).
# RUNTIME=true

if [ "$RUNTIME" != "" ]
then

EXTRA_LFLAG="-Wl,-rpath$DB2PATH/lib"
else

EXTRA_LFLAG=""
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2 $3 $4
fi

# Compile the program.
gcc -I$DB2PATH/include -c $1.c -D_REENTRANT

# Link the program.
gcc -o $1 $1.o $EXTRA_LFLAG -L$DB2PATH/lib -ldb2 -lpthread

Linux C++

Building C++ Applications on Linux

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

The build script, bldapp, in sqllib/samples/cpp, contains the commands to
build DB2 API and embedded SQL applications.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the

242 Building and Running Applications



second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the non-embedded SQL sample program cli_info from the source
file cli_info.C, enter:

bldapp cli_info

The result is an executable file, cli_info. You can run the executable file
against the sample database by entering:

cli_info

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
source file tbmod.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file, tbmod.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

Chapter 9. Linux 243



tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “Linux C++ Application Compile and Link Options” on page 245

Related samples:

v “bldapp -- Builds Linux C++ applications”
v “cli_info.C -- Set and get information at the client level (C++)”
v “tbmod.sqC -- How to modify table data (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C++ Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds Linux C++ applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To specify a runtime path for shared libraries, uncomment the
# following line (usually only needed for setuid applications).
# RUNTIME=true

if [ "$RUNTIME" != "" ]
then

EXTRA_LFLAG="-Wl,-rpath$DB2PATH/lib"
else

EXTRA_LFLAG=""
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2 $3 $4
# Compile the utilemb.C error-checking utility.
g++ -I$DB2PATH/include -c utilemb.C

else
# Compile the utilapi.C error-checking utility.
g++ -I$DB2PATH/include -c utilapi.C

244 Building and Running Applications



fi

# Compile the program.
g++ -I$DB2PATH/include -c $1.C

if [ -f $1".sqC" ]
then

# Link the program with utilemb.o
g++ -o $1 $1.o utilemb.o $EXTRA_LFLAG -L$DB2PATH/lib -ldb2

else
# Link the program with utilapi.o
g++ -o $1 $1.o utilapi.o $EXTRA_LFLAG -L$DB2PATH/lib -ldb2

fi

Linux C++ Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C++ embedded SQL and DB2 API applications with the Linux C++
compiler, as demonstrated in the bldapp build script.

Compile and Link Options for bldapp

Compile Options:

g++ The GNU/Linux C++ compiler.

-I$DB2PATH/include
Specify the location of the DB2 include files.

-c Perform compile only; no link. This script file has separate compile and link
steps.

Chapter 9. Linux 245



Compile and Link Options for bldapp

Link Options:

g++ Use the compiler as a front end for the linker.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

$EXTRA_LFLAG
If ’RUNTIME=true’ is uncommented, contains value ″-Wl,-
rpath,$DB2PATH/lib″; otherwise, contains no value.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-L$DB2PATH/lib
Specify the location of the DB2 shared libraries at link-time. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C++ Applications on Linux” on page 242

Related samples:

v “bldapp -- Builds Linux C++ applications”

Building C++ Routines on Linux

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures and user-defined functions). The script compiles the routines into
a shared library that can be called by a client application. It takes one or two
parameters.

246 Building and Running Applications



The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect.

The database parameter is optional. If no database name is supplied, the
program uses the default sample database.

Procedure:

The following examples show you how to build routine shared libraries with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure Shared Library

To build the sample program spserver from the source file spserver.sqC:
1. If connecting to the sample database, enter the build file name and

program name:
bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

The script file copies the stored procedure to the server in the path
sqllib/function.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by
calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new shared library to be
recognized.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library. You can build spclient
by using the script, bldapp.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

Chapter 9. Linux 247



where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Non-embedded SQL UDF Shared Library

To build the user-defined function program, udfsrv, from the source file
udfsrv.C, enter the build script name and program name:

bldrtn udfsrv

The script file copies the UDF to the sqllib/function directory.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build udfcli from the source file udfcli.sqC using the script,
bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Embedded SQL UDF Shared Library

248 Building and Running Applications



To build the embedded SQL user-defined function program, udfemsrv, from
the source file, udfemsrv.sqC, if connecting to the sample database, enter the
build script name and program name:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The script file copies the UDF to the sqllib/function directory.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build udfemcli from the source file udfemcli.sqC using the
script, bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfemsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “Linux C++ Routine Compile and Link Options” on page 250

Related samples:

v “bldrtn -- Builds Linux C++ routines (stored procedures and UDFs)”
v “spclient.sqC -- Call various stored procedures (C++)”
v “spserver.sqC -- A variety of types of stored procedures (C++)”
v “udfcli.sqC -- Call a variety of types of user-defined functions (C++)”

Chapter 9. Linux 249



v “udfemcli.sqC -- Call a variety of types of embedded SQL user-defined
functions. (C++)”

v “udfemsrv.sqC -- Call a variety of types of embedded SQL user-defined
functions. (C++)”

v “udfsrv.C -- Call a variety of types of user-defined functions (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “spcat -- To catalog C stored procedures on UNIX”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”

Build Script for C++ Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds Linux C++ routines (stored procedures and UDFs)
# Usage: bldsrv <prog_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# Set the runtime path since routines run as setuid.
EXTRA_LFLAG="-Wl,-rpath$DB2PATH/lib"

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2
fi

# Compile the program.
g++ -fpic -I$DB2PATH/include -c $1.C -D_REENTRANT

# Link the program and create a shared library.
g++ -shared -o $1 $1.o $EXTRA_LFLAG -L$DB2PATH/lib -ldb2 -lpthread

# Copy the shared library to the function subdirectory.
# The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Linux C++ Routine Compile and Link Options
These are the compile and link options recommended by DB2 for building
C++ routines (stored procedures and user-defined functions) with the Linux
C++ compiler, as demonstrated in the bldrtn build script.

250 Building and Running Applications



Compile and Link Options for bldrtn

Compile Options:

g++ The GNU/Linux C++ compiler.

-fpic Generate position independent code.

-I$DB2PATH/include
Specify the location of the DB2 include files.

-c Perform compile only; no link. This script file has separate compile and link
steps.

-D_REENTRANT
Defines _REENTRANT, needed as the routines may run in the same process
as other routines (THREADSAFE) or in the engine itself (NOT FENCED).

Link Options:

g++ Use the compiler as a front end for the linker.

-shared
Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

$EXTRA_LFLAG
Contains the value ″-Wl,-rpath,$DB2PATH/lib″ to set the runtime path since
routines run as setuid.

-Wl,-rpath,$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-ldb2 Link with the DB2 library.

-lpthread
Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C++ Routines on Linux” on page 246

Related samples:

v “bldrtn -- Builds Linux C++ routines (stored procedures and UDFs)”

Chapter 9. Linux 251



Building C++ Multi-Threaded Applications on Linux

Multi-threaded applications using Linux C++ need to be compiled with
-D_REENTRANT and linked with -lpthread.

DB2 provides build scripts for compiling and linking C++ embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

The script script, bldmt, contains the commands to build an embedded SQL
multi-threaded program. It takes up to four parameters.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.

Procedure:

To build the sample program, dbthrds, from the source file dbthrds.sqC, enter:
bldmt dbthrds

The result is an executable file, dbthrds. To run the executable file against the
sample database, enter:

dbthrds

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69

Related samples:

v “bldmt -- Builds Linux C++ multi-threaded applications”
v “dbthrds.sqC -- How to use multiple context APIs on UNIX (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C++ Multi-threaded Applications
#! /bin/sh
# SCRIPT: bldmt
# Builds Linux C++ multi-threaded applications
# Usage: bldmt <prog_name> [ <db_name> [ <userid> <password> ]]

252 Building and Running Applications



# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To specify a runtime path for shared libraries, uncomment the
# following line (usually only needed for setuid applications).
# RUNTIME=true

if [ "$RUNTIME" != "" ]
then

EXTRA_LFLAG="-Wl,-rpath$DB2PATH/lib"
else

EXTRA_LFLAG=""
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2 $3 $4
fi

# Compile the program.
g++ -I$DB2PATH/include -c $1.C -D_REENTRANT

# Link the program.
g++ -o $1 $1.o $EXTRA_LFLAG -L$DB2PATH/lib -ldb2 -lpthread

Chapter 9. Linux 253



254 Building and Running Applications



Chapter 10. Solaris

Forte C . . . . . . . . . . . . . 255
Building C Applications on Solaris . . . 255
Build Script for C Applications . . . . 257
Solaris C Application Compile and Link
Options . . . . . . . . . . . . 258
Building C Routines on Solaris . . . . 260
Build Script for C Routines . . . . . 263
Solaris C Routine Compile and Link
Options . . . . . . . . . . . . 264
Building C Multi-Threaded Applications
on Solaris . . . . . . . . . . . 265
Build Script for C Multi-threaded
Applications . . . . . . . . . . 267

Forte C++ . . . . . . . . . . . . 267
Building C++ Applications on Solaris . . 268
Build Script for C++ Applications . . . 269
Solaris C++ Application Compile and
Link Options . . . . . . . . . . 271
Building C++ Routines on Solaris . . . 273
Build Script for C++ Routines. . . . . 276
Solaris C++ Routine Compile and Link
Options . . . . . . . . . . . . 277

Building C++ Multi-Threaded
Applications on Solaris . . . . . . . 278
Build Script for C++ Multi-threaded
Applications . . . . . . . . . . 280

Micro Focus COBOL . . . . . . . . . 281
Configuring the Micro Focus COBOL
Compiler on Solaris . . . . . . . . 281
Building Micro Focus COBOL
Applications on Solaris . . . . . . . 281
Build Script for Micro Focus COBOL
Applications . . . . . . . . . . 283
Solaris Micro Focus COBOL Application
Compile and Link Options . . . . . . 284
Building Micro Focus COBOL Routines
on Solaris . . . . . . . . . . . 284
Build Script for Micro Focus COBOL
Routines . . . . . . . . . . . . 286
Solaris Micro Focus COBOL Routine
Compile and Link Options . . . . . . 287

This chapter provides detailed information for building applications in the
Solaris operating environment. For the latest DB2 application development
updates for Solaris, visit the Web page at:

http://www.ibm.com/software/data/db2/udb/ad

Forte C

Note: Forte C was formerly called ″SPARCompiler C″.

Building information for DB2 CLI Applications and routines is in the CLI
Guide and Reference.

Building C Applications on Solaris

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The build script, bldapp, contains the commands to build DB2 application
programs. It takes up to four parameters.

© Copyright IBM Corp. 1993 - 2002 255

http://www.ibm.com/software/data/db2/udb/ad


The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the DB2 API non-embedded SQL sample program, cli_info, from
the source file cli_info.c, enter:

bldapp cli_info

The result is an executable file, cli_info.

To run the executable file, enter the executable name:
cli_info

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
source file tbmod.sqc:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file, tbmod.

There are three ways to run this embedded SQL application:

256 Building and Running Applications



1. If accessing the sample database on the same instance, simply enter the
executable name:

tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “Solaris C Application Compile and Link Options” on page 258

Related samples:

v “bldapp -- Builds Solaris C applications”
v “cli_info.c -- Set and get information at the client level (C)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “tbmod.sqc -- How to modify table data (C)”

Build Script for C Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds Solaris C applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

CFLAG_ARCH=v9
else

CFLAG_ARCH=v8plusa
fi

# To specify a runtime path for shared libraries, uncomment the
# following line (usually only needed for setuid applications).
# RUNTIME=true

Chapter 10. Solaris 257



if [ "$RUNTIME" != "" ]
then

EXTRA_LFLAG="-R$DB2PATH/lib"
else

EXTRA_LFLAG=""
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2 $3 $4
# Compile the utilemb.c error-checking utility.
cc -xarch=$CFLAG_ARCH -I$DB2PATH/include -c utilemb.c

else
# Compile the utilapi.c error-checking utility.
cc -xarch=$CFLAG_ARCH -I$DB2PATH/include -c utilapi.c

fi

# Compile the program.
cc -xarch=$CFLAG_ARCH -I$DB2PATH/include -c $1.c

if [ -f $1".sqc" ]
then

# Link the program with utilemb.o
cc -xarch=$CFLAG_ARCH -mt -o $1 $1.o utilemb.o $EXTRA_LFLAG \

-L$DB2PATH/lib -ldb2
else

# Link the program with utilapi.o
cc -xarch=$CFLAG_ARCH -mt -o $1 $1.o utilapi.o $EXTRA_LFLAG \

-L$DB2PATH/lib -ldb2
fi

Solaris C Application Compile and Link Options
These are the compile and link options recommended by DB2 for building C
embedded SQL and DB2 API applications with the Forte C compiler, as
demonstrated in the bldapp build script.

Compile and Link Options for bldapp

Compile Options:

cc The C compiler.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
″v8plusa″ for 32-bit, or ″v9″ for 64-bit.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link
steps.

258 Building and Running Applications



Compile and Link Options for bldapp

Link Options:

cc Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
″v8plusa″ for 32-bit, or ″v9″ for 64-bit.

-mt Link in multi-thread support. Needed for linking with libdb2.
Note: If POSIX threads are used, DB2 applications also have to link with
-lpthread, whether or not they are threaded.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If not an embedded SQL program, include the DB2 API utility object file for
error checking.

$EXTRA_LFLAG
If ’RUNTIME=true’ is uncommented, contains value ″-R$DB2PATH/lib″;
otherwise, contains no value.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-L$DB2PATH/lib
Specify the location of the DB2 shared libraries at link-time. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C Applications on Solaris” on page 255

Related samples:

v “bldapp -- Builds Solaris C applications”

Chapter 10. Solaris 259



Building C Routines on Solaris

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures and user-defined functions). The script file compiles the routines
into a shared library that can be loaded by the database manager and called
by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect.

The database parameter is optional. If no database name is supplied, the
program uses the default sample database. And since the stored procedure
must be built on the same instance where the database resides, there are no
parameters for user ID and password.

Procedure:

The following examples show you how to build routine shared libraries with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure Shared Library

To build the sample program spserver from the source file spserver.sqc:
1. If connecting to the sample database, enter the build script name and the

program name:
bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

The script file copies the shared library to the sqllib/function directory
on the server.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by

260 Building and Running Applications



calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new shared library to be
recognized.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library.

You can build spclient by using the script file, bldapp.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Non-embedded SQL UDF Shared Library

To build the user-defined function program, udfsrv, from the source file
udfsrv.c, enter the build script name and the program name:

bldrtn udfsrv

The script file copies the UDF to the sqllib/function directory.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI and embedded SQL versions of this program are provided. You
can build the DB2 CLI udfcli client program from the source file udfcli.c, in
sqllib/samples/cli, using the script, bldapp.

You can build the embedded SQL udfcli client program from the source file
udfcli.sqc, in sqllib/samples/c, using the script file, bldapp.

To call the UDFs in the shared library, run the client application by entering:

Chapter 10. Solaris 261



udfcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Embedded SQL UDF Shared Library

To build the embedded SQL user-defined function program, udfemsrv, from
the source file udfemsrv.sqc, if connecting to the sample database, enter the
build script name and program name:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The script file copies the UDF library to the sqllib/function directory.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build the udfemcli client program from the source file,
udfemcli.sqc, in sqllib/samples/c, using the script file bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

262 Building and Running Applications



The client application accesses the shared library, udfemsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “Solaris C Routine Compile and Link Options” on page 264

Related samples:

v “bldrtn -- Builds Solaris C routines (stored procedures or UDFs)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “spcat -- To catalog C stored procedures on UNIX”
v “spclient.sqc -- Call various stored procedures (C)”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”
v “spserver.sqc -- A variety of types of stored procedures (C)”
v “udfcli.sqc -- Call a variety of types of user-defined functions (C)”
v “udfemcli.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfemsrv.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfsrv.c -- Call a variety of types of user-defined functions (C)”

Build Script for C Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds Solaris C routines (stored procedures or UDFs)
# Usage: bldrtn <prog_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

CFLAG_ARCH=v9

Chapter 10. Solaris 263



else
CFLAG_ARCH=v8plusa

fi

# Set the runtime path since routines run as setuid.
EXTRA_LFLAG="-R$DB2PATH/lib"

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2
fi

# Compile the program.
cc -xarch=$CFLAG_ARCH -mt -DUSE_UI_THREADS -Kpic \

-I$DB2PATH/include -c $1.c

# Link the program and create a shared library
cc -xarch=$CFLAG_ARCH -mt -G -o $1 $1.o $EXTRA_LFLAG \

-L$DB2PATH/lib -ldb2

# Copy the shared library to the sqllib/function subdirectory.
# Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Solaris C Routine Compile and Link Options
These are the compile and link options recommended by DB2 for building C
routines (stored procedures and user-defined functions) with the Forte C
compiler, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:

cc The C compiler.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
″v8plusa″ for 32-bit, or ″v9″ for 64-bit.

-mt Allow multi-threaded support, needed as the routines may run in the same
process as other routines (THREADSAFE) or in the engine itself (NOT
FENCED).

-DUSE_UI_THREADS
Allows Sun’s ″UNIX International″ threads APIs.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files.

-c Perform compile only; no link. This script has separate compile and link
steps.

264 Building and Running Applications



Compile and Link Options for bldrtn

Link Options:

cc Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
″v8plusa″ for 32-bit, or ″v9″ for 64-bit.

-mt This is required because the DB2 library is linked with -mt.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

$EXTRA_LFLAG
Contains the value ″-R$DB2PATH/lib″ to set the runtime path since routines
run as setuid.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-L$DB2PATH/lib
Specify the location of the DB2 shared libraries at link-time. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C Routines on Linux” on page 235

Related samples:

v “bldrtn -- Builds Linux C routines (stored procedures or UDFs)”

Building C Multi-Threaded Applications on Solaris

Multi-threaded applications using SUN and POSIX thread libraries are
supported by DB2. The default is Sun threads. Multi-threaded applications
using Forte C on Solaris need to be compiled and linked with -mt. This will
pass -D_REENTRANT to the preprocessor, and -lthread to the linker. You also
need to specify the compile define -DUSE_UI_THREADS, to use Sun’s ″Unix
International″ threads APIs.

Chapter 10. Solaris 265



Note: If you want to use POSIX threads, you have to add the compiler option
-D_POSIX_PTHREAD_SEMANTICS, which allows POSIX variants of functions
such as getpwnam_r(), and also add the link option -lpthread. If you
are using the bldmt script provided, you also have to delete the
-DUSE_UI_THREADS define.

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script, bldmt contains the commands to build a multi-threaded
application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.

Procedure:

To build the sample program, dbthrds, from the source file dbthrds.sqc, enter:
bldmt dbthrds

The result is an executable file, dbthrds. To run the executable file against the
sample database, enter:

dbthrds

Note: For multi-threaded programs with a fair number of connections, the
kernel parameters semsys:seminfo_semume and shmsys:shminfo_shmseg
may have to be set beyond their default values. Please see the related
link below on the db2osconf utility to obtain recommendations on the
values to set for these parameters.

Related concepts:

v “Build Files” on page 94
v “db2osconf - Utility for Kernel Parameter Values” in the Command Reference

Related reference:

v “C/C++ Samples” on page 69

Related samples:

v “bldmt -- Builds Solaris C multi-threaded applications”

266 Building and Running Applications



v “dbthrds.sqc -- How to use multiple context APIs on UNIX (C)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C Multi-threaded Applications
#! /bin/sh
# SCRIPT: bldmt
# Builds Solaris C multi-threaded applications
# Usage: bldmt <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64-bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

CFLAG_ARCH=v9
else

CFLAG_ARCH=v8plusa
fi

# To specify a runtime path for shared libraries, uncomment the
# following line (usually only needed for setuid applications).
# RUNTIME=true

if [ "$RUNTIME" != "" ]
then

EXTRA_LFLAG="-R$DB2PATH/lib"
else

EXTRA_LFLAG=""
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqc" ]
then

./embprep $1 $2 $3 $4
fi

# Compile the program.
cc -xarch=$CFLAG_ARCH -mt -DUSE_UI_THREADS -I$DB2PATH/include -c $1.c

# Link the program.
cc -xarch=$CFLAG_ARCH -mt -o $1 $1.o $EXTRA_LFLAG -L$DB2PATH/lib -ldb2

Forte C++

Note: Forte C++ was formerly called SPARCompiler C++

Chapter 10. Solaris 267



Building C++ Applications on Solaris

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

The build script, bldapp, contains the commands to build DB2 API and
embedded SQL applications. It takes up to four parameters.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter, and the only one needed for DB2 API programs that do
not contain embedded SQL. Building embedded SQL programs requires a
connection to the database so three optional parameters are also provided: the
second parameter, $2, specifies the name of the database to which you want to
connect; the third parameter, $3, specifies the user ID for the database, and $4
specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the non-embedded SQL sample program cli_info from the source
file cli_info.C, enter:

bldapp cli_info

The result is an executable file, cli_info. You can run the executable file
against the sample database by entering:

cli_info

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
source file tbmod.sqC:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

268 Building and Running Applications



3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file, tbmod.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “Solaris C++ Application Compile and Link Options” on page 270

Related samples:

v “bldapp -- Builds Solaris C++ applications”
v “cli_info.C -- Set and get information at the client level (C++)”
v “tbmod.sqC -- How to modify table data (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C++ Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds Solaris C++ applications
# Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64 bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]

Chapter 10. Solaris 269



then
CFLAG_ARCH=v9

else
CFLAG_ARCH=v8plusa

fi

# To specify a runtime path for shared libraries, uncomment the
# following line (usually only needed for setuid applications).
# RUNTIME=true

if [ "$RUNTIME" != "" ]
then

EXTRA_LFLAG="-R$DB2PATH/lib"
else

EXTRA_LFLAG=""
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2 $3 $4
# Compile the utilemb.C error-checking utility.
CC -xarch=$CFLAG_ARCH -I$DB2PATH/include -c utilemb.C

else
# Compile the utilapi.C error-checking utility.
CC -xarch=$CFLAG_ARCH -I$DB2PATH/include -c utilapi.C

fi

# Compile the program.
CC -xarch=$CFLAG_ARCH -I$DB2PATH/include -c $1.C

if [ -f $1".sqC" ]
then

# Link the program with utilemb.o
CC -xarch=$CFLAG_ARCH -mt -o $1 $1.o utilemb.o $EXTRA_LFLAG \

-L$DB2PATH/lib -ldb2
else

# Link the program with utilapi.o
CC -xarch=$CFLAG_ARCH -mt -o $1 $1.o utilapi.o $EXTRA_LFLAG \

-L$DB2PATH/lib -ldb2
fi

Solaris C++ Application Compile and Link Options
These are the compile and link options recommended by DB2 for building
C++ embedded SQL and DB2 API applications with the Forte C++ compiler,
as demonstrated in the bldapp build script.

270 Building and Running Applications



Compile and Link Options for bldapp

Compile Options:

CC The C++ compiler.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
″v8plusa″ for 32-bit, or ″v9″ for 64-bit.

-I$DB2PATH/include
Specify the location of the DB2 include files. For example:
$HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link
steps.

Chapter 10. Solaris 271



Compile and Link Options for bldapp

Link options:

CC Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
″v8plusa″ for 32-bit, or ″v9″ for 64-bit.

-mt Link in multi-thread support. Needed for linking with libdb2.
Note: If POSIX threads are used, DB2 applications also have to link with
-lpthread, whether or not they are threaded.

-o $1 Specify the executable.

$1.o Include the program object file.

utilemb.o
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.o
If a non-embedded SQL program, include the DB2 API utility object file for
error checking.

$EXTRA_LFLAG
If ’RUNTIME=true’ is uncommented, contains value ″-R$DB2PATH/lib″;
otherwise, contains no value.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-L$DB2PATH/lib
Specify the location of the DB2 shared libraries at link-time. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C++ Applications on Solaris” on page 268

Related samples:

v “bldapp -- Builds Solaris C++ applications”

272 Building and Running Applications



Building C++ Routines on Solaris

DB2 provides build scripts for compiling and linking C embedded SQL and
DB2 API programs. These are located in the sqllib/samples/c directory, along
with sample programs that can be built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures or user-defined functions). The script compiles the routines into a
shared library that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect.

The database parameter is optional. If no database name is supplied, the
program uses the default sample database. And since the stored procedure
must be built on the same instance where the database resides, there are no
parameters for user ID and password.

Procedure:

The following examples show you how to build routine shared libraries with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure Shared Library

To build the sample program spserver from the source file spserver.sqC:
1. If connecting to the sample database, enter the build file name and

program name:
bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

The script file copies the shared library to the sqllib/function directory
on the server.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by

Chapter 10. Solaris 273



calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new shared library to be
recognized.

Once you build the shared library, spserver, you can build the client
application, spclient, that accesses the shared library. You can build spclient
by using the script, bldapp.

To call the stored procedures in the shared library, run the sample client
application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, spserver, and executes a
number of stored procedure functions on the server database. The output is
returned to the client application.

Non-embedded SQL UDF Shared Library

To build the user-defined function program, udfsrv, from the source file
udfsrv.C, enter the build script name and program name:

bldrtn udfsrv

The script file copies the UDF to the sqllib/function directory.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. You can build udfcli from the source file udfcli.sqC using the script file
bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfcli database userid password

where

274 Building and Running Applications



database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, udfsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Embedded SQL UDF Shared Library

To build the embedded SQL user-defined function program, udfemsrv, from
the source file, udfemsrv.sqC, if connecting to the sample database, enter the
build script name and program name:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The script file copies the UDF to the sqllib/function directory.

If necessary, set the file mode for the UDF so the client application database
manager can access it.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build udfemcli from the source file udfemcli.sqC using the
script file bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

Chapter 10. Solaris 275



The client application accesses the shared library, udfemsrv, and executes the
user-defined functions on the server database. The output is returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “C/C++ Samples” on page 69
v “Solaris C++ Routine Compile and Link Options” on page 277

Related samples:

v “bldrtn -- Builds Solaris C++ routines (stored procedures or UDFs)”
v “spclient.sqC -- Call various stored procedures (C++)”
v “spserver.sqC -- A variety of types of stored procedures (C++)”
v “udfcli.sqC -- Call a variety of types of user-defined functions (C++)”
v “udfsrv.C -- Call a variety of types of user-defined functions (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”

Build Script for C++ Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds Solaris C++ routines (stored procedures or UDFs)
# Usage: bldrtn <prog_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64-bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

CFLAG_ARCH=v9
else

CFLAG_ARCH=v8plusa
fi

# Set the runtime path since routines run as setuid.
EXTRA_LFLAG="-R$DB2PATH/lib"

276 Building and Running Applications



# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2
fi

# Compile the program.
CC -xarch=$CFLAG_ARCH -mt -DUSE_UI_THREADS -Kpic \

-I$DB2PATH/include -c $1.C

# Link the program and create a shared library
CC -xarch=$CFLAG_ARCH -mt -G -o $1 $1.o $EXTRA_LFLAG \

-L$DB2PATH/lib -ldb2

# Copy the shared library to the sqllib/function subdirectory.
# Note: the user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

Solaris C++ Routine Compile and Link Options
These are the compile and link options recommended by DB2 for building
C++ routines (stored procedures and user-defined functions) with the Forte
C++ compiler, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:

CC The C++ compiler.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
″v8plusa″ for 32-bit, or ″v9″ for 64-bit.

-mt Allow multi-threaded support, needed as the routines may run in the same
process as other routines (THREADSAFE) or in the engine itself (NOT
FENCED).

-DUSE_UI_THREADS
Allows Sun’s ″UNIX International″ threads APIs.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include
Specify the location of the DB2 include files.

-c Perform compile only; no link. This script has separate compile and link
steps.

Chapter 10. Solaris 277



Compile and Link Options for bldrtn

Link Options:

CC Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH
This option ensures that the compiler will produce valid executables when
linking with libdb2.so. The value for $CFLAG_ARCH is set to either
″v8plusa″ for 32-bit, or ″v9″ for 64-bit.

-mt This is required because the DB2 library is linked with -mt.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

$EXTRA_LFLAG
Contains value ″-R$DB2PATH/lib″ to set the runtime path since routines run
as setuid.

-R$DB2PATH/lib
Specify the location of the DB2 shared libraries at run-time. For example:
$HOME/sqllib/lib.

-L$DB2PATH/lib
Specify the location of the DB2 shared libraries at link-time. For example:
$HOME/sqllib/lib. If you do not specify the -L option, /usr/lib:/lib is
assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C++ Routines on Solaris” on page 273

Related samples:

v “bldrtn -- Builds Solaris C++ routines (stored procedures or UDFs)”

Building C++ Multi-Threaded Applications on Solaris

Multi-threaded applications using SUN and POSIX thread libraries are
supported by DB2. The default is Sun threads. Multi-threaded applications
using Forte C++ on Solaris need to be compiled and linked with -mt. This will
pass -D_REENTRANT to the preprocessor, and -lthread to the linker. You also
need to specify the compile define -DUSE_UI_THREADS, to use Sun’s ″Unix
International″ threads APIs.

278 Building and Running Applications



Note: If you want to use POSIX threads, you have to add the compiler option
-D_POSIX_PTHREAD_SEMANTICS, which allows POSIX variants of functions
such as getpwnam_r(), and also add the link option -lpthread. If you
are using the bldmt script provided, you also have to delete the
-DUSE_UI_THREADS define.

DB2 provides build scripts for compiling and linking C++ embedded SQL and
DB2 API programs. These are located in the sqllib/samples/cpp directory,
along with sample programs that can be built with these files.

The script, bldmt, contains the commands to build a multi-threaded
application. It takes up to four parameters.

The first parameter, $1, specifies the name of your source file. The second
parameter, $2, specifies the name of the database to which you want to
connect. The third parameter, $3, specifies the user ID for the database, and $4
specifies the password. Only the first parameter, the source file name, is
required. Database name, user ID, and password are optional. If no database
name is supplied, the program uses the default sample database.

Procedure:

To build the sample program, dbthrds, from the source file dbthrds.sqC, enter:
bldmt dbthrds

The result is an executable file, dbthrds. To run the executable file against the
sample database, enter:

dbthrds

Note: For multi-threaded programs with a fair number of connections, the
kernel parameters semsys:seminfo_semume and shmsys:shminfo_shmseg
may have to be set beyond their default values. Please see the related
link below on the db2osconf utility to obtain recommendations on the
values to set for these parameters.

Related concepts:

v “Build Files” on page 94
v “db2osconf - Utility for Kernel Parameter Values” in the Command Reference

Related reference:

v “C/C++ Samples” on page 69

Related samples:

v “bldmt -- Builds Solaris C++ multi-threaded applications”

Chapter 10. Solaris 279



v “dbthrds.sqC -- How to use multiple context APIs on UNIX (C++)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for C++ Multi-threaded Applications
#! /bin/sh
# SCRIPT: bldmt
# Builds Solaris C++ multi-threaded applications
# Usage: bldmt <prog_name> [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# To compile 64-bit programs, uncomment the following line.
# BUILD_64BIT=true

if [ "$BUILD_64BIT" != "" ]
then

CFLAG_ARCH=v9
else

CFLAG_ARCH=v8plusa
fi

# To specify a runtime path for shared libraries, uncomment the
# following line (usually only needed for setuid applications).
# RUNTIME=true

if [ "$RUNTIME" != "" ]
then

EXTRA_LFLAG="-R$DB2PATH/lib"
else

EXTRA_LFLAG=""
fi

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqC" ]
then

./embprep $1 $2 $3 $4
fi

# Compile the program.
CC -xarch=$CFLAG_ARCH -mt -DUSE_UI_THREADS -I$DB2PATH/include -c $1.C

# Link the program.
CC -xarch=$CFLAG_ARCH -mt -o $1 $1.o $EXTRA_LFLAG -L$DB2PATH/lib -ldb2

280 Building and Running Applications



Micro Focus COBOL

Configuring the Micro Focus COBOL Compiler on Solaris

If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the Micro Focus COBOL compiler, these are points you
have to keep in mind.

Procedure:

v When you precompile your application using the command line processor
command db2 prep, use the target mfcob option.

v You must include the DB2 COBOL COPY file directory in the Micro Focus
COBOL environment variable COBCPY. The COBCPY environment variable
specifies the location of COPY files. The DB2 COPY files for Micro Focus
COBOL reside in sqllib/include/cobol_mf under the database instance
directory.
To include the directory, enter:
– On bash or Korn shells:

export COBCPY=$COBCPY:$HOME/sqllib/include/cobol_mf

– On C shell:
setenv COBCPY $COBCPY:$HOME/sqllib/include/cobol_mf

Note: You might want to set COBCPY in the .profile file.

Related tasks:

v “Building Micro Focus COBOL Routines on Solaris” on page 284
v “Building Micro Focus COBOL Applications on Solaris” on page 281

Building Micro Focus COBOL Applications on Solaris

DB2 provides build scripts for compiling and linking Micro Focus COBOL
embedded SQL and DB2 API programs. These are located in the
sqllib/samples/cobol_mf directory, along with sample programs that can be
built with these files.

The build script, bldapp, contains the commands to build a DB2 application
program. It takes up to four parameters.

The first parameter, $1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, $2, specifies the
name of the database to which you want to connect; the third parameter, $3,
specifies the user ID for the database, and $4 specifies the password.

Chapter 10. Solaris 281



For an embedded SQL program, bldapp passes the parameters to the
precompile and bind script, embprep. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

The result is an executable file client. You can run the executable file against
the sample database by entering:

client

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Related concepts:

282 Building and Running Applications



v “Build Files” on page 94

Related reference:

v “Solaris Micro Focus COBOL Application Compile and Link Options” on
page 283

v “COBOL Samples” on page 80

Related samples:

v “bldapp -- Builds Solaris Micro Focus COBOL applications”
v “client.cbl -- How to set and query a client (MF COBOL)”
v “updat.sqb -- How to update, delete and insert table data (MF COBOL)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for Micro Focus COBOL Applications
#! /bin/sh
# SCRIPT: bldapp
# Builds Solaris Micro Focus COBOL applications
# Usage: bldapp [ <db_name> [ <userid> <password> ]]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqb" ]
then

./embprep $1 $2 $3 $4
fi

# Set COBCPY to include the DB2 COPY files directory.
COBCPY=$COBCPY:$DB2PATH/include/cobol_mf

# Compile the checkerr.cbl error-checking utility.
cob -cx checkerr.cbl

# Compile the program.
cob -cx $1.cbl

# Link the program.
cob -x $1.o checkerr.o -L$DB2PATH/lib -ldb2 -ldb2gmf

Solaris Micro Focus COBOL Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL embedded SQL and DB2 API applications with the Micro
Focus COBOL compiler on Solaris, as demonstrated in the bldapp build script.

Chapter 10. Solaris 283



Compile and Link Options for bldapp

Compile Options:

cob The Micro Focus COBOL compiler.

-cx Compile to object module.

Link Options:

cob Use the compiler as a front end for the linker.

-x Specify an executable program.

$1.o Include the program object file.

checkerr.o
Include the utility object file for error-checking.

-L$DB2PATH/lib
Specify the location of the DB2 static and shared libraries at link-time. For
example: $HOME/sqllib/lib.

-ldb2 Link with the DB2 library.

-ldb2gmf
Link with the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building Micro Focus COBOL Applications on Solaris” on page 281

Related samples:

v “bldapp -- Builds Solaris Micro Focus COBOL applications”

Building Micro Focus COBOL Routines on Solaris

DB2 provides build scripts for compiling and linking Micro Focus COBOL
embedded SQL and DB2 API programs. These are located in the
sqllib/samples/cobol_mf directory, along with sample programs that can be
built with these files.

The script, bldrtn, contains the commands to build routines (stored
procedures). The script file compiles the routines into a shared library that can
be called by a client application.

The first parameter, $1, specifies the name of your source file. The script file
uses the source file name, $1, for the shared library name. The second
parameter, $2, specifies the name of the database to which you want to
connect. Since the routine must be built on the same instance where the
database resides, there are no parameters for user ID and password.

284 Building and Running Applications



Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

Procedure:

Before building Micro Focus routines on Solaris, run the following commands:
db2stop
db2set DB2LIBPATH=$LD_LIBRARY_PATH
db2set DB2ENVLIST="COBDIR LD_LIBRARY_PATH"
db2set
db2start

Ensure that db2stop stops the database. The last db2set command is issued to
check your settings: make sure DB2LIBPATH and DB2ENVLIST are set correctly.

To build the sample program, outsrv, from the source file, outsrv.sqb, if
connecting to the sample database, enter:

bldsrv outsrv

If connecting to another database, also enter the database name:
bldsrv outsrv database

The script file copies the shared library to the server in the path
sqllib/function.

Once you build the shared library, outsrv, you can build the client
application, outcli, that calls the routine of the same name within it. You can
build outcli using the script file, bldapp.

To call the stored procedure, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the shared library, outsrv, which executes the
routine of the same name on the server database, and then returns the output
to the client application.

Chapter 10. Solaris 285



Related concepts:

v “Build Files” on page 94

Related reference:

v “Solaris Micro Focus COBOL Routine Compile and Link Options” on page
287

v “COBOL Samples” on page 80

Related samples:

v “bldrtn -- Builds Solaris Micro Focus COBOL routines (stored procedures)”
v “outcli.sqb -- Call stored procedures using the SQLDA structure (MF

COBOL)”
v “outsrv.sqb -- Demonstrates stored procedures using the SQLDA structure

(MF COBOL)”
v “embprep -- To prep and bind C/C++ and Micro Focus COBOL embedded

SQL programs”

Build Script for Micro Focus COBOL Routines
#! /bin/sh
# SCRIPT: bldrtn
# Builds Solaris Micro Focus COBOL routines (stored procedures)
# Usage: bldrtn <prog_name> [ <db_name> ]

# Set DB2PATH to where DB2 will be accessed.
# The default is the standard instance path.
DB2PATH=$HOME/sqllib

# If an embedded SQL program, precompile and bind it.
if [ -f $1".sqb" ]
then

./embprep $1 $2
fi

# Set COBCPY to include the DB2 COPY files directory.
COBCPY=$COBCPY:$DB2PATH/include/cobol_mf

# Compile the program.
cob -cx $1.cbl

# Link the program.
cob -x -o $1 $1.o -Q -G -L$DB2PATH/lib -ldb2 -ldb2gmf

# Copy the shared library to the sqllib/function subdirectory.
# The user must have write permission to this directory.
rm -f $DB2PATH/function/$1
cp $1 $DB2PATH/function

286 Building and Running Applications



Solaris Micro Focus COBOL Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL routines (stored procedures) with the Micro Focus COBOL
compiler on Solaris, as demonstrated in the bldrtn build script.

Compile and Link Options for bldrtn

Compile Options:

cob The COBOL compiler.

-cx Compile to object module.

Link Options:

cob Use the compiler as a front-end for the linker.

-x Produces a shared library when used with the -G option.

-o $1 Specify the executable program.

$1.o Specify the program object file.

-Q -G Generate a shared library.

-L$DB2PATH/lib
Specify the location of the DB2 runtime shared libraries. For example:
$HOME/sqllib/lib. If you do not specify the -L option, the compiler assumes
the following path: /usr/lib:/lib.

-ldb2 Link to the DB2 library.

-ldb2gmf
Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building Micro Focus COBOL Routines on Solaris” on page 284

Related samples:

v “bldrtn -- Builds Solaris Micro Focus COBOL routines (stored procedures)”

Chapter 10. Solaris 287



288 Building and Running Applications



Chapter 11. Windows Operating Systems

WCHARTYPE CONVERT Precompile
Option . . . . . . . . . . . . . 289
Object Linking and Embedding Database
(OLE DB) Table Functions . . . . . . . 290
Windows Management Instrumentation
(WMI) . . . . . . . . . . . . . 291
Microsoft Visual Basic . . . . . . . . 291

Building ADO Applications with Visual
Basic . . . . . . . . . . . . . 291
Building RDO Applications with Visual
Basic . . . . . . . . . . . . . 294
Object Linking and Embedding (OLE)
Automation with Visual Basic. . . . . 296

Microsoft Visual C++ . . . . . . . . 297
Building ADO Applications with Visual
C++ . . . . . . . . . . . . . 297
Object Linking and Embedding (OLE)
Automation with Visual C++ . . . . . 299
Building C/C++ Applications on
Windows . . . . . . . . . . . 300
Batch File for C/C++ Applications . . . 302
Windows C/C++ Application Compile
and Link Options . . . . . . . . . 303
Building C/C++ Routines on Windows 304
Batch File for C/C++ Routines . . . . 307
Windows C/C++ Routine Compile and
Link Options . . . . . . . . . . 309

IBM VisualAge COBOL . . . . . . . . 310
Configuring the IBM COBOL Compiler
on Windows . . . . . . . . . . 310

Building IBM COBOL Applications on
Windows. . . . . . . . . . . . 311
Batch File for IBM COBOL Applications 312
Windows IBM COBOL Application
Compile and Link Options . . . . . . 313
Building IBM COBOL Routines on
Windows . . . . . . . . . . . 314
Batch File for IBM COBOL Routines . . 315
Windows IBM COBOL Routine Compile
and Link Options . . . . . . . . . 316

Micro Focus COBOL . . . . . . . . . 316
Configuring the Micro Focus COBOL
Compiler on Windows . . . . . . . 316
Building Micro Focus COBOL
Applications on Windows . . . . . . 317
Batch File for Micro Focus COBOL
Applications . . . . . . . . . . 319
Windows Micro Focus COBOL
Application Compile and Link Options . 320
Building Micro Focus COBOL Routines
on Windows . . . . . . . . . . 320
Batch File for Micro Focus COBOL
Routines . . . . . . . . . . . . 322
Windows Micro Focus COBOL Routine
Compile and Link Options . . . . . . 322

Object REXX . . . . . . . . . . . 323
Building Object REXX Applications on
Windows . . . . . . . . . . . 323

This chapter provides detailed information for building applications on
Windows operating systems. For the latest DB2 application development
updates for Windows, visit the Web page at:

http://www.ibm.com/software/data/db2/udb/ad

WCHARTYPE CONVERT Precompile Option

The WCHARTYPE precompile option handles graphic data in either
multi-byte format or wide-character format using the wchar_t data type.

For DB2® for Windows® operating systems, the WCHARTYPE CONVERT
option is supported for applications compiled with the Microsoft® Visual C++

© Copyright IBM Corp. 1993 - 2002 289

http://www.ibm.com/software/data/db2/udb/ad


compiler. However, do not use the CONVERT option with this compiler if
your application inserts data into a DB2 database in a code page that is
different from the database code page. DB2 normally performs a code page
conversion in this situation; however, the Microsoft C run-time environment
does not handle substitution characters for certain double byte characters.
This could result in run time conversion errors.

The default option for WCHARTYPE is NOCONVERT. With the
NOCONVERT option, no implicit character conversion occurs between
application and the database manager. Data in a graphic host variable is sent
to and received from the database manager as unaltered Double Byte
Character Set (DBCS) characters.

If you need to convert your graphic data to multi-byte format from
wide-character format, use the wcstombs() function. For example:

wchar_t widechar[200];
wchar_t mb[200];
wcstombs((char *)mb,widechar,200);

EXEC SQL INSERT INTO TABLENAME VALUES(:mb);

Similarly, you can use the mbstowcs() function to convert from multi-byte to
wide-character format.

Do not issue a setlocale() call from your application if your application is
statically bound to the C run-time libraries, as this may lead to C run-time
conversion errors. Using setlocale() is not a problem if your application is
dynamically bound to the C run-time library. This is also the case for routines
(stored procedures and user-defined functions).

Related reference:

v “PRECOMPILE” in the Command Reference

Object Linking and Embedding Database (OLE DB) Table Functions

DB2® supports OLE DB table functions. For these functions, there is no
application building needed besides creating the CREATE FUNCTION DDL. OLE
DB table function sample files are provided by DB2 in the
sqllib\samples\oledb directory. These are Command Line Processor (CLP)
files. They can be built with the following steps:
1. db2 connect to database_name
2. db2 -t -v -f file_name.db2
3. db2 terminate

290 Building and Running Applications



where database_name is the database you are connecting to, and file_name is
the name of the CLP file, with extension .db2.

These commands must be done in a DB2 Command Window.

Related reference:

v “Object Linking and Embedding Database (OLE DB) Table Function
Samples” on page 90

Windows Management Instrumentation (WMI)

Windows® Management Instrumentation (WMI) is a key component of
Microsoft’s Windows management services. WMI provides a consistent and
richly descriptive model of the configuration, status, and operational aspects
of applications and system.

The DB2® WMI provider allows WMI applications to monitor DB2 server
services, enumerate and create databases, configure operational settings and
perform database backup, restore, and roll-forward operations.

DB2 provides WMI sample files for the Visual Basic Scripting language
located in the sqllib\samples\wmi directory. Before running the sample
programs, ensure that the DB2 WMI Provider is registered by running the
following commands:

mofcomp %DB2PATH%\bin\db2wmi.mof
regsvr32 %DB2PATH%\bin\db2wmi.dll

where %DB2PATH% is the path where DB2 is installed.

Use the cscript command to run the Visual Basic Script samples. For
example, to run the listsvr sample script, enter:

cscript listsvr.vbs

Related reference:

v “Windows Management Instrumentation Samples” on page 88

Microsoft Visual Basic

Building ADO Applications with Visual Basic

ActiveX Data Objects (ADO) allow you to write an application to access and
manipulate data in a database server through an OLE DB provider. The
primary benefits of ADO are high speed, ease of use, low memory overhead,
and a small disk footprint.

Chapter 11. Windows Operating Systems 291



Visual Basic ADO sample programs are located in the sqllib\samples\VB\ADO
directory.

Note: To run the DB2 ADO samples, these versions or later of the following
components are recommended:
1. Visual Basic 6.0 Professional Edition
2. Microsoft Data Access 2.7 SDK (optionally installed with DB2

Version 8)
3. Visual Basic Service pack 5 from

http://msdn.microsoft.com/vstudio/sp/vs6sp5/vbfixes.asp.
4. The latest Visual Studio Service Pack from

http://msdn.microsoft.com/vstudio/.

Procedure:

You can use either of two ODBC-compliant providers:
v IBM OLE DB provider for DB2
v Microsoft OLE DB provider for ODBC

Using the IBM OLE DB provider for DB2

DB2 Version 8.1 Clients on Windows operating systems will optionally install
IBMDADB2, the IBM OLE DB 2.0-compliant provider for DB2. The provider
exposes interfaces for consumers who want to access data in a DB2 database.
The IBM OLE DB provider for DB2 supports the following ADO application
types:
v Microsoft Active Server Pages (ASP)
v Microsoft Visual Studio C++ and Visual Basic applications
v Microsoft Visual Interdev

For details on these types of applications, refer to the ADO documentation.

To access a DB2 server using the IBM OLE DB provider for DB2, the Visual
Basic application should specify the PROVIDER keyword in the ADO
connection string as follows:

Dim c1 As ADODB.Connection
Dim c1str As String
c1str = "Provider=ibmdadb2; DSN=db2alias; UID=userid; PWD=password"
c1.Open c1str
...

where db2alias is the alias for the DB2 database which is cataloged in the
DB2 database directory.

292 Building and Running Applications



Note: When using the IBM OLE DB provider for DB2, you do not need to
perform the ODBC catalog step for the datasource. This step is required
when you are using the OLE DB provider for ODBC.

Using the Microsoft OLE DB provider for ODBC

To use ADO with the Microsoft OLE DB provider and Visual Basic, you need
to establish a reference to the ADO type library. Do the following:
1. Select ″References″ from the Project menu
2. Check the box for ″Microsoft ActiveX Data Objects <version_number>

Library″

3. Click ″OK″.

where <version_number> is the current version the ADO library.

Once this is done, ADO objects, methods, and properties will be accessible
through the VBA Object Browser and the IDE Editor.

Establish a connection:
Dim db As Connection
Set db = New Connection

Set client-side cursors supplied by the local cursor library:
db.CursorLocation = adUseClient

and set the provider so ADO will use the Microsoft ODBC Driver.

Accessing the sample database with ADO

A full Visual Basic program includes forms and other graphical elements, and
you need to view it inside the Visual Basic environment. Here are Visual Basic
commands as part of a program to access the DB2 sample database, after you
have connected to the database with either the IBM OLE DB provider or the
Microsoft OLE DB provider, as discussed above.

Open the sample database without specifying a user ID or password; that is,
use the current user:

db.Open "SAMPLE"

Create a record set:
Set adoPrimaryRS = New Recordset

Use a select statement to fill the record set:
adoPrimaryRS.Open "select EMPNO,LASTNAME,FIRSTNME,MIDINIT,EDLEVEL,JOB
from EMPLOYEE Order by EMPNO", db

Chapter 11. Windows Operating Systems 293



From this point, the programmer can use the ADO methods to access the data
such as moving to the next record set:

adoPrimaryRS.MoveNext

Deleting the current record in the record set:
adoPrimaryRS.Delete

As well, the programmer can do the following to access an individual field:
Dim Text1 as String
Text1 = adoPrimaryRS!LASTNAME

Related concepts:

v “Purpose of the IBM OLE DB Provider for DB2” in the Application
Development Guide: Programming Client Applications

v “Application Types Supported by the IBM OLE DB Provider for DB2” in
the Application Development Guide: Programming Client Applications

v “Connections to Data Sources with Visual Basic ADO Applications” in the
Application Development Guide: Programming Client Applications

v “OLE DB Services Automatically Enabled by IBM OLE DB Provider” in the
Application Development Guide: Programming Client Applications

v “Large Object Manipulation with the IBM OLE DB Provider” in the
Application Development Guide: Programming Client Applications

v “MTS and COM+ Distributed Transaction Support and the IBM OLE DB
Provider” in the Application Development Guide: Programming Client
Applications

v “IBM OLE DB Provider Restrictions” in the Application Development Guide:
Programming Client Applications

Related reference:

v “IBM OLE DB Provider Support for OLE DB Components and Interfaces”
in the Application Development Guide: Programming Client Applications

v “IBM OLE DB Provider Support for OLE DB Properties” in the Application
Development Guide: Programming Client Applications

v “IBM OLE DB Provider Support for ADO Methods and Properties” in the
Application Development Guide: Programming Client Applications

v “Visual Basic Samples” on page 86

Building RDO Applications with Visual Basic

Remote Data Objects (RDO) provide an information model for accessing
remote data sources through ODBC. RDO offers a set of objects that make it
easy to connect to a database, execute queries and stored procedures,
manipulate results, and commit changes to the server. It is specifically

294 Building and Running Applications



designed to access remote ODBC relational data sources, and makes it easier
to use ODBC without complex application code, and is a primary means of
accessing a relational database that is exposed with an ODBC driver. RDO
implements a thin code layer over the Open Database Connectivity (ODBC)
API and driver manager that establishes connections, creates result sets and
cursors, and executes complex procedures using minimal workstation
resources.

DB2 provides Visual Basic RDO sample programs in the sqllib\samples\VB
directory.

Procedure:

To use RDO with Microsoft Visual Basic, you need to establish a reference to
your Visual Basic project. Do the following:
1. Select ″References″ from the Project menu
2. Check the box for ″Microsoft Remote Data Object <Version Number>″

3. Click ″OK″.

where <version_number> is the current RDO version.

A full Visual Basic program includes forms and other graphical elements, and
you need to view it inside the Visual Basic environment. Here are Visual Basic
commands as part of a DB2 program that connects to the sample database,
opens a record set that selects all the columns from the EMPLOYEE table, and
then displays the employee names in a message window, one by one:

Dim rdoEn As rdoEngine
Dim rdoEv As rdoEnvironment
Dim rdoCn As rdoConnection
Dim Cnct$
Dim rdoRS As rdoResultset
Dim SQLQueryDB As String

Assign the connection string:
Cnct$ = "DSN=SAMPLE;UID=;PWD=;"

Set the RDO environment:
Set rdoEn = rdoEngine
Set rdoEv = rdoEn.rdoEnvironments(0)

Connect to the database:
Set rdoCn = rdoEv.OpenConnection("", , , Cnct$)

Assign the SELECT statement for the record set:
SQLQueryDB = "SELECT * FROM EMPLOYEE"

Chapter 11. Windows Operating Systems 295



Open the record set and execute the query:
Set rdoRS = rdoCn.OpenResultset(SQLQueryDB)

While not at the end of the record set, display Message Box with
LASTNAME, FIRSTNME from table, one employee at a time:

While Not rdoRS.EOF
MsgBox rdoRS!LASTNAME & ", " & rdoRS!FIRSTNME

Move to the next row in the record set:
rdoRS.MoveNext
Wend

Close the program:
rdoRS.Close
rdoCn.Close
rdoEv.Close

Related reference:

v “Visual Basic Samples” on page 86

Object Linking and Embedding (OLE) Automation with Visual Basic

You can implement OLE automation UDFs and stored procedures in any
language, as OLE is language independent. You do this by exposing methods
of OLE automation servers, and registering the methods as UDFs with DB2.
Application development environments which support the development of
OLE automation servers include certain versions of the following: Microsoft®

Visual Basic, Microsoft Visual C++, Microsoft Visual J++, Microsoft FoxPro,
Borland Delphi, Powersoft PowerBuilder, and Micro Focus COBOL. Also,
Java™ beans objects that are wrapped properly for OLE, for example with
Microsoft Visual J++, can be accessed via OLE automation.

You need to refer to the documentation of the appropriate application
development environment for further information on developing OLE
automation servers.

OLE Automation UDFs and Stored Procedures

Microsoft Visual Basic supports the creation of OLE automation servers. A
new kind of object is created in Visual Basic by adding a class module to the
Visual Basic project. Methods are created by adding public sub-procedures to
the class module. These public procedures can be registered to DB2® as OLE
automation UDFs and stored procedures. For further information on creating
and building OLE servers, refer to the Microsoft Visual Basic manual, Creating
OLE Servers, Microsoft Corporation, 1995, and to the OLE samples provided by
Microsoft Visual Basic.

296 Building and Running Applications



DB2 provides self-containing samples of OLE automation UDFs and stored
procedures in Microsoft Visual Basic, located in the directory
sqllib\samples\ole\msvb. For information on building and running the OLE
automation UDF and stored procedure samples, please see the README file in
sqllib\samples\ole.

Related reference:

v “Object Linking and Embedding (OLE) Samples” on page 89

Microsoft Visual C++

This section discusses building applications with ActiveX Data Objects (ADO),
Object Linking and Embedding (OLE), as well as embedded SQL and DB2
APIs.

Building information for DB2 CLI applications and routines is in the CLI
Guide and Reference.

Building ADO Applications with Visual C++

ActiveX Data Objects (ADO) allow you to write an application to access and
manipulate data in a database server through an OLE DB provider. The
primary benefits of ADO are high speed, ease of use, low memory overhead,
and a small disk footprint.

DB2 provides Visual C++ ADO sample programs in the sqllib\samples\VC
directory.

Procedure:

You can use either of two ODBC-compliant providers:
v IBM OLE DB provider for DB2
v Microsoft OLE DB provider for ODBC

Using the IBM OLE DB provider for DB2

DB2 Version 8.1 Clients on Windows operating systems will optionally install
IBMDADB2, the IBM OLE DB 2.0-compliant provider for DB2. The provider
exposes interfaces for consumers who want to access data in a DB2 database.
The IBM OLE DB provider for DB2 supports the following ADO application
types:
v Microsoft Active Server Pages (ASP)
v Microsoft Visual Studio C++ and Visual Basic applications
v Microsoft Visual Interdev

Chapter 11. Windows Operating Systems 297



For details on these types of applications, refer to the ADO documentation.

Using the Microsoft OLE DB provider for ODBC

DB2 ADO programs using the Microsoft OLE DB provider and Visual C++
can be compiled the same as regular C++ programs, once you make the
following change.

To have your C++ source program run as an ADO program, you can put the
following import statement at the top of your source program file:
#import "C:\program files\common files\system\ado\msado<VERSION NUMBER>.dll" \
no_namespace \
rename( "EOF", "adoEOF")

where <VERSION NUMBER> is the version number of the ADO library.

When the program is compiled, the user will need to verify that the
msado<VERSION NUMBER>.dll is in the path specified. An alternative is to add
C:\program files\common files\system\ado to the environment variable
LIBPATH, and then use this shorter import statement in your source file:
#import <msado<VERSION NUMBER>.dll> \
no_namespace \
rename( "EOF", "adoEOF")

This is the method used in the DB2 sample program, BLOBAccess.dsp.

With this IMPORT statement, your DB2 program will have access to the ADO
library. You can now compile your Visual C++ program as you would any
other program. If you are also using another programming interface, such as
DB2 APIs, or DB2 CLI, refer to the appropriate section in this chapter for
additional information on building your program.

Related concepts:

v “Purpose of the IBM OLE DB Provider for DB2” in the Application
Development Guide: Programming Client Applications

v “Application Types Supported by the IBM OLE DB Provider for DB2” in
the Application Development Guide: Programming Client Applications

v “Compilation and Linking of C/C++ Applications and the IBM OLE DB
Provider” in the Application Development Guide: Programming Client
Applications

v “Connections to Data Sources in C/C++ Applications using the IBM OLE
DB Provider” in the Application Development Guide: Programming Client
Applications

v “OLE DB Services Automatically Enabled by IBM OLE DB Provider” in the
Application Development Guide: Programming Client Applications

298 Building and Running Applications



v “Large Object Manipulation with the IBM OLE DB Provider” in the
Application Development Guide: Programming Client Applications

v “IBM OLE DB Provider Restrictions” in the Application Development Guide:
Programming Client Applications

Related reference:

v “Data Type Mappings between DB2 and OLE DB” in the Application
Development Guide: Programming Client Applications

v “Data Conversion for Setting Data from OLE DB Types to DB2 Types” in
the Application Development Guide: Programming Client Applications

v “Data Conversion for Setting Data from DB2 Types to OLE DB Types” in
the Application Development Guide: Programming Client Applications

v “IBM OLE DB Provider Support for OLE DB Components and Interfaces”
in the Application Development Guide: Programming Client Applications

v “IBM OLE DB Provider Support for OLE DB Properties” in the Application
Development Guide: Programming Client Applications

v “IBM OLE DB Provider Support for ADO Methods and Properties” in the
Application Development Guide: Programming Client Applications

v “Visual C++ Samples” on page 88

Object Linking and Embedding (OLE) Automation with Visual C++

You can implement OLE automation UDFs and stored procedures in any
language, as OLE is language independent. You do this by exposing methods
of OLE automation servers, and registering the methods as UDFs with DB2.
Application development environments which support the development of
OLE automation servers include certain versions of the following: Microsoft®

Visual Basic, Microsoft Visual C++, Microsoft Visual J++, Microsoft FoxPro,
Borland Delphi, Powersoft PowerBuilder, and Micro Focus COBOL. Also,
Java™ beans objects that are wrapped properly for OLE, for example with
Microsoft Visual J++, can be accessed via OLE automation.

You need to refer to the documentation of the appropriate application
development environment for further information on developing OLE
automation servers.

OLE Automation UDFs and Stored Procedures

Microsoft Visual C++ supports the creation of OLE automation servers.
Servers can be implemented using Microsoft Foundation Classes and the
Microsoft Foundation Class application wizard, or implemented as Win32
applications. Servers can be DLLs or EXEs. Refer to the Microsoft Visual C++
documentation and to the OLE samples provided by Microsoft Visual C++ for
further information.

Chapter 11. Windows Operating Systems 299



DB2® provides self-containing samples of OLE automation UDFs and stored
procedures in Microsoft Visual C++, located in the directory
sqllib\samples\ole\msvc. For information on building and running the OLE
automation UDF and stored procedure samples, please see the README file in
sqllib\samples\ole.

Related reference:

v “Object Linking and Embedding (OLE) Samples” on page 89

Building C/C++ Applications on Windows

DB2 provides batch files for compiling and linking DB2 API and embedded
SQL C/C++ programs. These are located in the sqllib\samples\c and
sqllib\samples\cpp directories, along with sample programs that can be built
with these files.

The batch file, bldapp.bat, contains the commands to build DB2 API and
embedded SQL programs. It takes up to four parameters, represented inside
the batch file by the variables %1, %2, %3, and %4.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
additional parameters are also provided: the second parameter, %2, specifies
the name of the database to which you want to connect; the third parameter,
%3, specifies the user ID for the database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep.bat. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the DB2 API non-embedded SQL sample program, cli_info, from
either the source file cli_info.c, in sqllib\samples\c, or from the source file
cli_info.cxx, in sqllib\samples\cpp, enter:

bldapp cli_info

The result is an executable file, cli_info.exe. You can run the executable file
by entering the executable name (without the extension) on the command line:

cli_info

300 Building and Running Applications



Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, tbmod, from the
C source file tbmod.sqc in sqllib\samples\c, or from the C++ source file
tbmod.sqx in sqllib\samples\cpp:
1. If connecting to the sample database on the same instance, enter:

bldapp tbmod

2. If connecting to another database on the same instance, also enter the
database name:

bldapp tbmod database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp tbmod database userid password

The result is an executable file tbmod.exe.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
tbmod

2. If accessing another database on the same instance, enter the executable
name and the database name:

tbmod database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

tbmod database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “Windows C/C++ Application Compile and Link Options” on page 303
v “C/C++ Samples” on page 69

Related samples:

v “bldapp.bat -- Builds C applications on Windows”
v “cli_info.c -- Set and get information at the client level (C)”
v “embprep.bat -- Prep and binds a C/C++ or Micro Focus COBOL

embedded SQL program on Windows”
v “tbmod.sqc -- How to modify table data (C)”
v “bldapp.bat -- Builds C++ applications on Windows”

Chapter 11. Windows Operating Systems 301



v “cli_info.C -- Set and get information at the client level (C++)”
v “tbmod.sqC -- How to modify table data (C++)”

Batch File for C/C++ Applications
@echo off
rem BATCH FILE: bldapp.bat
rem Builds Windows Microsoft Visual C++ applications
rem Usage: bldapp prog_name [ db_name [ userid password ]]

rem Default compiler is set to Microsoft Visual C++
rem To use a different compiler, comment out "set BLDCOMP=cl"
rem and uncomment "set BLDCOMP=icl" or "set BLDCOMP=ecl"
rem Microsoft C/C++ Compiler
set BLDCOMP=cl

rem Intel C++ Compiler for 32-bit applications
rem set BLDCOMP=icl

rem Intel C++ Compiler for Itanium 64-bit applications
rem set BLDCOMP=ecl

if exist "%1.sqx" goto embedded
if exist "%1.sqc" goto embedded
goto non_embedded

:embedded
rem Precompile and bind the program.
call embprep %1 %2 %3 %4
rem Compile the program.
if exist "%1.cxx" goto cpp_emb
%BLDCOMP% -Zi -Od -c -W2 -DWIN32 %1.c utilemb.c
goto link_embedded
:cpp_emb
%BLDCOMP% -Zi -Od -c -W2 -DWIN32 %1.cxx utilemb.cxx
rem Link the program.
:link_embedded
link -debug -out:%1.exe %1.obj utilemb.obj db2api.lib
goto exit

:non_embedded
rem Compile the program.
if exist "%1.cxx" goto cpp_non
%BLDCOMP% -Zi -Od -c -W2 -DWIN32 %1.c utilapi.c
goto link_non_embedded
:cpp_non
%BLDCOMP% -Zi -Od -c -W2 -DWIN32 %1.cxx utilapi.cxx
rem Link the program.
:link_non_embedded
link -debug -out:%1.exe %1.obj utilapi.obj db2api.lib
:exit
@echo on

302 Building and Running Applications



Windows C/C++ Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C/C++ embedded SQL and DB2 API applications on Windows with
the Microsoft Visual C++ compiler, as demonstrated in the bldapp.bat batch
file.

Compile and Link Options for bldapp

Compile Options:

%BLDCOMP%
Variable for the compiler. The default is cl, the Microsoft Visual C++
compiler. It can be also set to icl, the Intel C++ Compiler for 32-bit
applications, or ecl, the Intel C++ Compiler for Itanium 64-bit applications.

-Zi Enable debugging information

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link. The batch file has separate compile and link
steps.

-W2 Output warning, error, and severe and unrecoverable error messages.

-DWIN32
Compiler option necessary for Windows operating systems.

Link Options:

link Use the linker to link.

-debug Include debugging information.

-out:%1.exe
Specify a filename

%1.obj Include the object file

utilemb.obj
If an embedded SQL program, include the embedded SQL utility object file
for error checking.

utilapi.obj
If not an embedded SQL program, include the DB2 API utility object file for
error checking.

db2api.lib
Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C/C++ Applications on Windows” on page 300

Related samples:

Chapter 11. Windows Operating Systems 303



v “bldapp.bat -- Builds C applications on Windows”
v “bldapp.bat -- Builds C++ applications on Windows”

Building C/C++ Routines on Windows

DB2 provides batch files for compiling and linking DB2 API and embedded
SQL programs in C and C++. These are located in the sqllib\samples\c and
sqllib\samples\cpp directories, along with sample programs that can be built
with these files.

The batch file bldrtn.bat contains the commands to build embedded SQL
routines (stored procedures and user-defined functions). The batch file builds
a DLL on the server. It takes two parameters, represented inside the batch file
by the variables %1 and %2.

The first parameter, %1, specifies the name of your source file. The batch file
uses the source file name for the DLL name. The second parameter, %2,
specifies the name of the database to which you want to connect. Since the
DLL must be built on the same instance where the database resides, there are
no parameters for user ID and password.

Only the first parameter, the source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

Procedure:

The following examples show you how to build routine DLLs with:
v stored procedures
v non-embedded SQL user-defined functions (UDFs)
v embedded SQL user-defined functions (UDFs)

Stored Procedure DLL

To build the spserver DLL from either the C source file, spserver.sqc, or the
C++ source file, spserver.sqx:
1. Enter the batch file name and program name:

bldrtn spserver

If connecting to another database, also enter the database name:
bldrtn spserver database

304 Building and Running Applications



The batch file uses the module definition file spserver.def, contained in
the same directory as the sample programs, to build the DLL. The batch
file copies the DLL, spserver.dll, to the server in the path
sqllib\function.

2. Next, catalog the routines by running the spcat script on the server:
spcat

This script connects to the sample database, uncatalogs the routines if they
were previously cataloged by calling spdrop.db2, then catalogs them by
calling spcreate.db2, and finally disconnects from the database. You can
also call the spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new DLL to be
recognized. If necessary, set the file mode for the DLL so the DB2 instance
can access it.

Once you build the DLL, spserver, you can build the client application
spclient that calls it.

You can build spclient by using the batch file, bldapp.bat.

To call the DLL, run the sample client application by entering:

spclient database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another database name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the DLL, spserver, and executes a number of
routines on the server database. The output is returned to the client
application.

Non-embedded SQL UDF DLL

To build the user-defined function udfsrv from the source file udfsrv.c, enter:
bldrtn udfsrv

Chapter 11. Windows Operating Systems 305



The batch file uses the module definition file, udfsrv.def, contained in the
same directory as the sample program files, to build the user-defined function
DLL. The batch file copies the user-defined function DLL, udfsrv.dll, to the
server in the path sqllib\function.

Once you build udfsrv, you can build the client application, udfcli, that calls
it. DB2 CLI, as well as embedded SQL C and C++ versions of this program
are provided.

You can build the DB2 CLI udfcli program from the udfcli.c source file in
sqllib\samples\cli using the batch file bldapp.

You can build the embedded SQL C udfcli program from the udfcli.sqc
source file in sqllib\samples\c using the batch file bldapp.

You can build the embedded SQL C++ udfcli program from the udfcli.sqx
source file in sqllib\samples\cpp using the batch file bldapp.

To run the UDF, enter:
udfcli

The calling application calls the ScalarUDF function from the udfsrv DLL.

Embedded SQL UDF DLL

To build the embedded SQL user-defined function library udfemsrv from the C
source file udfemsrv.sqc in sqllib\samples\c, or from the C++ source file
udfemsrv.sqx in sqllib\samples\cpp, enter:

bldrtn udfemsrv

If connecting to another database, also enter the database name:
bldrtn udfemsrv database

The batch file uses the module definition file, udfemsrv.def, contained in the
same directory as the sample programs, to build the user-defined function
DLL. The batch file copies the user-defined function DLL, udfemsrv.dll, to
the server in the path sqllib\function.

Once you build udfemsrv, you can build the client application, udfemcli, that
calls it. You can build udfemcli from the C source file udfemcli.sqc in
sqllib\samples\c, or from the C++ source file udfemcli.sqx in
sqllib\samples\cpp using the batch file bldapp.

To run the UDF, enter:
udfemcli

306 Building and Running Applications



The calling application calls the UDFs in the udfemsrv DLL.

Related concepts:

v “Build Files” on page 94

Related reference:

v “Windows C/C++ Routine Compile and Link Options” on page 308
v “C/C++ Samples” on page 69

Related samples:

v “bldrtn.bat -- Builds C routines (stored procedures and UDFs) on Windows”
v “embprep.bat -- Prep and binds a C/C++ or Micro Focus COBOL

embedded SQL program on Windows”
v “spcat -- To catalog C stored procedures on UNIX”
v “spclient.sqc -- Call various stored procedures (C)”
v “spcreate.db2 -- How to catalog the stored procedures contained in

spserver.sqc ”
v “spdrop.db2 -- How to uncatalog the stored procedures contained in

spserver.sqc ”
v “spserver.sqc -- A variety of types of stored procedures (C)”
v “udfcli.sqc -- Call a variety of types of user-defined functions (C)”
v “udfemcli.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfemsrv.sqc -- Call a variety of types of embedded SQL user-defined

functions. (C)”
v “udfsrv.c -- Call a variety of types of user-defined functions (C)”
v “bldrtn.bat -- Builds C++ routines (stored procedures and UDFs) on

Windows”
v “spclient.sqC -- Call various stored procedures (C++)”
v “spserver.sqC -- A variety of types of stored procedures (C++)”
v “udfcli.sqC -- Call a variety of types of user-defined functions (C++)”
v “udfemcli.sqC -- Call a variety of types of embedded SQL user-defined

functions. (C++)”
v “udfemsrv.sqC -- Call a variety of types of embedded SQL user-defined

functions. (C++)”
v “udfsrv.C -- Call a variety of types of user-defined functions (C++)”

Batch File for C/C++ Routines
@echo off
rem BATCH FILE: bldrtn.bat
rem Builds Windows Microsoft Visual C++ routines (stored procedures and UDFs)

Chapter 11. Windows Operating Systems 307



rem Usage: bldrtn prog_name [ db_name ]

rem Default compiler is set to Microsoft Visual C++
rem To use a different compiler, comment out "set BLDCOMP=cl"
rem and uncomment "set BLDCOMP=icl" or "set BLDCOMP=ecl"
rem Microsoft C/C++ Compiler
set BLDCOMP=cl

rem Intel C++ Compiler for 32-bit applications
rem set BLDCOMP=icl

rem Intel C++ Compiler for Itanium 64-bit applications
rem set BLDCOMP=ecl

if exist "%1.sqc" goto embedded
if exist "%1.sqx" goto embedded
goto compile

:embedded
rem Precompile and bind the program.
call embprep %1 %2

:compile
rem Compile the program.
if exist "%1.cxx" goto cpp
%BLDCOMP% -Zi -Od -c -W2 -DWIN32 %1.c
goto link_step
:cpp
%BLDCOMP% -Zi -Od -c -W2 -DWIN32 %1.cxx

:link_step
rem Link the program.
link -debug -out:%1.dll -dll %1.obj db2api.lib -def:%1.def

rem Copy the routine DLL to the ’function’ directory
copy %1.dll "%DB2PATH%\function"
@echo on

Windows C/C++ Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building C/C++ routines (stored procedures and user-defined functions) on
Windows with the Microsoft Visual C++ compiler, as demonstrated in the
bldrtn.bat batch file.

308 Building and Running Applications



Compile and Link Options for bldrtn

Compile Options:

%BLDCOMP%
Variable for the compiler. The default is cl, the Microsoft Visual C++
compiler. It can be also set to icl, the Intel C++ Compiler for 32-bit
applications, or ecl, the Intel C++ Compiler for Itanium 64-bit applications.

-Zi Enable debugging information

-Od Disable optimization.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-W2 Output warning, error, and severe and unrecoverable error messages.

-DWIN32
Compiler option necessary for Windows operating systems.

Link Options:

link Use the linker to link.

-debug Include debugging information.

-out:%1.dll
Build a .DLL file.

%1.obj Include the object file.

db2api.lib
Link with the DB2 library.

-def:%1.def
Module definition file.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building C/C++ Routines on Windows” on page 304

Related samples:

v “bldrtn.bat -- Builds C routines (stored procedures and UDFs) on Windows”
v “bldrtn.bat -- Builds C++ routines (stored procedures and UDFs) on

Windows”

Chapter 11. Windows Operating Systems 309



IBM VisualAge COBOL

Configuring the IBM COBOL Compiler on Windows

If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the IBM VisualAge COBOL compiler, there are several
points to keep in mind.

Procedure:

v When you precompile your application using the command line processor
command db2 prep, use the target ibmcob option.

v Do not use tab characters in your source files.
v Use the PROCESS and CBL keywords in your source files to set compile

options. Place the keywords in columns 8 to 72 only.
v If your application contains only embedded SQL, but no DB2 API calls, you

do not need to use the pgmname(mixed) compile option. If you use DB2 API
calls, you must use the pgmname(mixed) compile option.

v If you are using the ″System/390 host data type support″ feature of the
IBM VisualAge COBOL compiler, the DB2 include files for your
applications are in the following directory:
%DB2PATH%\include\cobol_i

If you are building DB2 sample programs using the batch files provided,
the include file path specified in the batch files must be changed to point to
the cobol_i directory and not the cobol_a directory.

If you are NOT using the ″System/390 host data type support″ feature of
the IBM VisualAge COBOL compiler, or you are using an earlier version of
this compiler, then the DB2 include files for your applications are in the
following directory:
%DB2PATH%\include\cobol_a

The cobol_a directory is the default.
v Specify COPY file names to include the .cbl extension as follows:

COPY "sql.cbl".

Related tasks:

v “Building IBM COBOL Applications on Windows” on page 311
v “Building IBM COBOL Routines on Windows” on page 314

310 Building and Running Applications



Building IBM COBOL Applications on Windows

DB2 provides batch files for compiling and linking DB2 API and embedded
SQL programs. These are located in the sqllib\samples\cobol directory, along
with sample programs that can be built with these files.

The batch file, bldapp.bat, contains the commands to build a DB2 application
program. It takes up to four parameters, represented inside the batch file by
the variables %1, %2, %3, and %4.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building
embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3,
specifies the user ID for the database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind file, embprep.bat. If no database name is supplied, the
default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the non-embedded SQL sample program client from the source file
client.cbl, enter:

bldapp client

The result is an executable file client.exe. You can run the executable file
against the sample database by entering the executable name (without the
extension):

client

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

Chapter 11. Windows Operating Systems 311



bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name:
updat

2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “Windows IBM COBOL Application Compile and Link Options” on page
313

v “COBOL Samples” on page 80

Related samples:

v “bldapp.bat -- Builds Windows VisualAge COBOL applications”
v “client.cbl -- How to set and query a client (IBM COBOL)”
v “embprep.bat -- To prep and bind a COBOL embedded SQL program on

Windows”
v “updat.sqb -- How to update, delete and insert table data (IBM COBOL)”

Batch File for IBM COBOL Applications
@echo off
rem BATCH FILE: bldapp.bat
rem Builds Windows VisualAge COBOL applications
rem Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

rem If an embedded SQL program, precompile and bind it.
if not exist "%1.sqb" goto compile_step
call embprep %1 %2 %3 %4

:compile_step
rem Compile the error-checking utility.

312 Building and Running Applications



cob2 -qpgmname(mixed) -c -qlib -I"%DB2PATH%\include\cobol_a" checkerr.cbl

rem Compile the program.
cob2 -qpgmname(mixed) -c -qlib -I"%DB2PATH%\include\cobol_a" %1.cbl

rem Link the program.
cob2 %1.obj checkerr.obj db2api.lib
@echo on

Windows IBM COBOL Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL embedded SQL and DB2 API applications on Windows with
the IBM VisualAge COBOL compiler, as demonstrated in the bldapp.bat batch
file.

Compile and Link Options for bldapp

Compile Options:
cob2 The IBM VisualAge COBOL compiler.
-qpgmname(mixed)

Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-qlib Instructs the compiler to process COPY statements.
-Ipath Specify the location of the DB2 include files. For example:

-I"%DB2PATH%\include\cobol_a".
checkerr.cbl

Compile the error-checking utility.

Link Options:
cob2 Use the compiler as a front-end for the linker
%1.obj Include the program object file.
checkerr.obj

Include the error-checking utility object file.
db2api.lib

Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building IBM COBOL Applications on Windows” on page 311

Related samples:

v “bldapp.bat -- Builds Windows VisualAge COBOL applications”

Chapter 11. Windows Operating Systems 313



Building IBM COBOL Routines on Windows

DB2 provides batch files for compiling and linking DB2 API and embedded
SQL programs in IBM COBOL. These are located in the sqllib\samples\cobol
directory, along with sample programs that can be built with these files.

The batch file, bldrtn.bat, contains the commands to build embedded SQL
routines (stored procedures). The batch file compiles the routines into a DLL
on the server. It takes two parameters, represented inside the batch file by the
variables %1 and %2.

The first parameter, %1, specifies the name of your source file. The batch file
uses the source file name, %1, for the DLL name. The second parameter, %2,
specifies the name of the database to which you want to connect. Since the
stored procedure must be built on the same instance where the database
resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

Procedure:

To build the sample program outsrv from the source file outsrv.sqb,
connecting to the sample database, enter:

bldrtn outsrv

If connecting to another database, also include the database name:
bldrtn outsrv database

The batch file copies the DLL to the server in the path sqllib/function.

Once you build the DLL outsrv, you can build the client application outcli
that calls the routine within the DLL (which has the same name as the DLL).
You can build outcli using the batch file bldapp.bat.

To call the outsrv routine, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

314 Building and Running Applications



password
Is a valid password for the user ID.

The client application accesses the DLL, outsrv, and executes the routine of
the same name on the server database, and then returns the output to the
client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “Windows IBM COBOL Routine Compile and Link Options” on page 316
v “COBOL Samples” on page 80

Related samples:

v “bldrtn.bat -- Builds Windows VisualAge COBOL routines (stored
procedures)”

v “embprep.bat -- To prep and bind a COBOL embedded SQL program on
Windows”

v “outcli.sqb -- Call stored procedures using the SQLDA structure (IBM
COBOL)”

v “outsrv.sqb -- Demonstrates stored procedures using the SQLDA structure
(IBM COBOL)”

Batch File for IBM COBOL Routines
@echo off
rem BATCH FILE: bldrtn.bat
rem Builds Windows VisualAge COBOL routines (stored procedures)
rem Usage: bldrtn <prog_name> [ <db_name> ]

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the stored procedure.
cob2 -qpgmname(mixed) -c -qlib -I"%DB2PATH%\include\cobol_a" %1.cbl

rem Link the stored procedure and create a shared library.
ilib /nol /gi:%1 %1.obj
ilink /free /nol /dll db2api.lib %1.exp %1.obj iwzrwin3.obj

rem Copy stored procedure to the %DB2PATH%\function directory.
copy %1.dll "%DB2PATH%\function"
@echo on

Chapter 11. Windows Operating Systems 315



Windows IBM COBOL Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL routines (stored procedures and user-defined functions) on
Windows with the IBM VisualAge COBOL compiler, as demonstrated in the
bldrtn.bat batch file.

Compile and Link Options for bldrtn

Compile Options:
cob2 The IBM VisualAge COBOL compiler.
-qpgmname(mixed)

Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-c Perform compile only; no link. This batch file has separate compile and link
steps.

-qlib Instructs the compiler to process COPY statements.
-Ipath Specify the location of the DB2 include files. For example:

-I"%DB2PATH%\include\cobol_a".

Link Options:
ilink Use the IBM VisualAge COBOL linker.
/free Free format.
/nol No logo.
/dll Create the DLL with the source program name.
db2api.lib

Link with the DB2 library.
%1.exp Include the export file.
%1.obj Include the program object file.
iwzrwin3.obj

Include the object file provided by IBM VisualAge COBOL.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building IBM COBOL Routines on Windows” on page 314

Related samples:

v “bldrtn.bat -- Builds Windows VisualAge COBOL routines (stored
procedures)”

Micro Focus COBOL

Configuring the Micro Focus COBOL Compiler on Windows

If you develop applications that contain embedded SQL and DB2 API calls,
and you are using the Micro Focus compiler, there are several points to keep
in mind.

316 Building and Running Applications



Procedure:

v When you precompile your application using the command line processor
command db2 prep, use the target mfcob option.

v Ensure the LIB environment variable points to %DB2PATH%\lib like this:
set LIB="%DB2PATH%\lib;%LIB%"

v The DB2 COPY files for Micro Focus COBOL reside in
%DB2PATH%\include\cobol_mf. Set the COBCPY environment variable to
include the directory like this:
set COBCPY="%DB2PATH%\include\cobol_mf;%COBCPY%"

You must make calls to all DB2 application programming interfaces using
calling convention 74. The DB2 COBOL precompiler automatically inserts a
CALL-CONVENTION clause in a SPECIAL-NAMES paragraph. If the
SPECIAL-NAMES paragraph does not exist, the DB2 COBOL precompiler
creates it, as follows:
Identification Division
Program-ID. "static".
special-names.

call-convention 74 is DB2API.

Also, the precompiler automatically places the symbol DB2API, which is used
to identify the calling convention, after the ″call″ keyword whenever a DB2
API is called. This occurs, for instance, whenever the precompiler generates a
DB2 API run-time call from an embedded SQL statement.

If calls to DB2 APIs are made in an application which is not precompiled, you
should manually create a SPECIAL-NAMES paragraph in the application,
similar to that given above. If you are calling a DB2 API directly, then you
will need to manually add the DB2API symbol after the ″call″ keyword.

Related tasks:

v “Building Micro Focus COBOL Applications on Windows” on page 317
v “Building Micro Focus COBOL Routines on Windows” on page 320

Building Micro Focus COBOL Applications on Windows

DB2 provides batch files for compiling and linking DB2 API and embedded
SQL programs. These are located in the sqllib\samples\cobol_mf directory,
along with sample programs that can be built with these files.

The batch file bldapp.bat contains the commands to build a DB2 application
program. It takes up to four parameters, represented inside the batch file by
the variables %1, %2, %3, and %4.

The first parameter, %1, specifies the name of your source file. This is the only
required parameter for programs that do not contain embedded SQL. Building

Chapter 11. Windows Operating Systems 317



embedded SQL programs requires a connection to the database so three
optional parameters are also provided: the second parameter, %2, specifies the
name of the database to which you want to connect; the third parameter, %3,
specifies the user ID for the database, and %4 specifies the password.

For an embedded SQL program, bldapp passes the parameters to the
precompile and bind batch file, embprep.bat. If no database name is supplied,
the default sample database is used. The user ID and password parameters are
only needed if the instance where the program is built is different from the
instance where the database is located.

Procedure:

The following examples show you how to build and run DB2 API and
embedded SQL applications.

To build the non-embedded SQL sample program, client, from the source file
client.cbl, enter:

bldapp client

The result is an executable file client.exe. You can run the executable file
against the sample database by entering the executable name (without the
extension):

client

Building and Running Embedded SQL Applications

There are three ways to build the embedded SQL application, updat, from the
source file updat.sqb:
1. If connecting to the sample database on the same instance, enter:

bldapp updat

2. If connecting to another database on the same instance, also enter the
database name:

bldapp updat database

3. If connecting to a database on another instance, also enter the user ID and
password of the database instance:

bldapp updat database userid password

The result is an executable file, updat.exe.

There are three ways to run this embedded SQL application:
1. If accessing the sample database on the same instance, simply enter the

executable name (without the extension):
updat

318 Building and Running Applications



2. If accessing another database on the same instance, enter the executable
name and the database name:

updat database

3. If accessing a database on another instance, enter the executable name,
database name, and user ID and password of the database instance:

updat database userid password

Related concepts:

v “Build Files” on page 94

Related reference:

v “Windows Micro Focus COBOL Application Compile and Link Options” on
page 320

v “COBOL Samples” on page 80

Related samples:

v “bldapp.bat -- Builds Windows Micro Focus Cobol applications”
v “client.cbl -- How to set and query a client (MF COBOL)”
v “updat.sqb -- How to update, delete and insert table data (MF COBOL)”
v “embprep.bat -- Prep and binds a C/C++ or Micro Focus COBOL

embedded SQL program on Windows”

Batch File for Micro Focus COBOL Applications
@echo off
rem BATCH FILE: bldapp.bat
rem Builds Windows Micro Focus Cobol applications
rem Usage: bldapp <prog_name> [ <db_name> [ <userid> <password> ]]

rem If an embedded SQL program, precompile and bind it.
if not exist "%1.sqb" goto compile_step
call embprep %1 %2 %3 %4

:compile_step
rem Compile the error-checking utility.
cobol checkerr.cbl;

rem Compile the program.
cobol %1.cbl;

rem Link the program.
cbllink -l %1.obj checkerr.obj db2api.lib
@echo on

Chapter 11. Windows Operating Systems 319



Windows Micro Focus COBOL Application Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL embedded SQL and DB2 API applications on Windows with
the Micro Focus COBOL compiler, as demonstrated in the bldapp.bat batch
file.

Compile and Link Options for bldapp

Compile Option:

cobol The Micro Focus COBOL compiler.

Link Options:

cbllink
Use the linker to link edit.

-l Link with the lcobol library.

checkerr.obj
Link with the error-checking utility object file.

db2api.lib
Link with the DB2 API library.

Refer to your compiler documentation for additional compiler options.

Related tasks:

v “Building Micro Focus COBOL Applications on Windows” on page 317

Related samples:

v “bldapp.bat -- Builds Windows Micro Focus Cobol applications”

Building Micro Focus COBOL Routines on Windows

DB2 provides batch files for compiling and linking DB2 API and embedded
SQL programs in Micro Focus COBOL. These are located in the
sqllib\samples\cobol_mf directory, along with sample programs that can be
built with these files.

The batch file bldrtn.bat contains the commands to build embedded SQL
routines (stored procedures). The batch file compiles the routines into a DLL
on the server. The batch file takes two parameters, represented inside the
batch file by the variables %1 and %2.

The first parameter, %1, specifies the name of your source file. The batch file
uses the source file name, %1, for the DLL name. The second parameter, %2,
specifies the name of the database to which you want to connect. Since the
stored procedure must be built on the same instance where the database
resides, there are no parameters for user ID and password.

320 Building and Running Applications



Only the first parameter, source file name, is required. Database name is
optional. If no database name is supplied, the program uses the default
sample database.

Procedure:

To build the sample program outsrv from the source file outsrv.sqb, if
connecting to the sample database, enter:

bldrtn outsrv

If connecting to another database, also enter the database name:
bldrtn outsrv database

The script file copies the DLL to the server in the path sqllib/function.

Once you build the DLL, outsrv, you can build the client application, outcli,
that calls the routine within the DLL (which has the same name as the DLL).
You can build outcli using the batch file, bldapp.bat.

To call the outsrv routine, run the sample client application by entering:
outcli database userid password

where

database
Is the name of the database to which you want to connect. The name
could be sample, or its alias, or another name.

userid Is a valid user ID.

password
Is a valid password for the user ID.

The client application accesses the DLL, outsrv, which executes the routine of
the same name on the server database. The output is then returned to the
client application.

Related concepts:

v “Build Files” on page 94

Related reference:

v “Windows Micro Focus COBOL Routine Compile and Link Options” on
page 322

v “COBOL Samples” on page 80

Related samples:

Chapter 11. Windows Operating Systems 321



v “bldrtn.bat -- Builds Windows Micro Focus Cobol routines (stored
procedures)”

v “outcli.sqb -- Call stored procedures using the SQLDA structure (MF
COBOL)”

v “outsrv.sqb -- Demonstrates stored procedures using the SQLDA structure
(MF COBOL)”

v “embprep.bat -- Prep and binds a C/C++ or Micro Focus COBOL
embedded SQL program on Windows”

Batch File for Micro Focus COBOL Routines
@echo off
rem BATCH FILE: bldrtn.bat
rem Builds Windows Micro Focus Cobol routines (stored procedures)
rem Usage: bldsrv <prog_name> [ <db_name> ]

rem Precompile and bind the program.
call embprep %1 %2

rem Compile the stored procedure.
cobol %1.cbl /case;

rem Link the stored procedure and create a shared library.
cbllink /d %1.obj db2api.lib

rem Copy the stored procedure to the %DB2PATH%\function directory.
copy %1.dll "%DB2PATH%\function"
@echo on

Windows Micro Focus COBOL Routine Compile and Link Options
The following are the compile and link options recommended by DB2 for
building COBOL routines (stored procedures and user-defined functions) on
Windows with the Micro Focus COBOL compiler, as demonstrated in the
bldrtn.bat batch file.

Compile and Link Options for bldrtn

Compile Options:

cobol The Micro Focus COBOL compiler.

/case Prevent external symbols being converted to upper case.

Link Options:

cbllink
Use the Micro Focus COBOL linker to link edit.

/d Create a .dll file.

db2api.lib
Link with the DB2 API library.

Refer to your compiler documentation for additional compiler options.

322 Building and Running Applications



Related tasks:

v “Building Micro Focus COBOL Routines on Windows” on page 320

Related samples:

v “bldrtn.bat -- Builds Windows Micro Focus Cobol routines (stored
procedures)”

Object REXX

Building Object REXX Applications on Windows

Object REXX is an object-oriented version of the REXX language.
Object-oriented extensions have been added to classic REXX, but its existing
functions and instructions have not changed. The Object REXX interpreter is
an enhanced version of its predecessor, with additional support for:
v Classes, objects, and methods
v Messaging and polymorphism
v Single and multiple inheritance

Object REXX is fully compatible with classic REXX. In this section, whenever
we refer to REXX, we are referring to all versions of REXX, including Object
REXX.

You do not precompile or bind REXX programs.

On Windows, REXX programs are not required to start with a comment.
However, for portability reasons you are recommended to start each REXX
program with a comment that begins in the first column of the first line. This
will allow the program to be distinguished from a batch command on other
platforms:
/* Any comment will do. */

REXX sample programs can be found in the directory sqllib\samples\rexx.

Procedure:

To run the sample REXX program updat, enter:
rexx updat.cmd

Related reference:

v “REXX Samples” on page 91

Chapter 11. Windows Operating Systems 323



324 Building and Running Applications



Part 4. Appendixes

© Copyright IBM Corp. 1993 - 2002 325



326 Building and Running Applications



Appendix A. DB2 Universal Database technical information

Overview of DB2 Universal Database technical information

DB2 Universal Database technical information can be obtained in the
following formats:
v Books (PDF and hard-copy formats)
v A topic tree (HTML format)
v Help for DB2 tools (HTML format)
v Sample programs (HTML format)
v Command line help
v Tutorials

This section is an overview of the technical information that is provided and
how you can access it.

Categories of DB2 technical information
The DB2 technical information is categorized by the following headings:
v Core DB2 information
v Administration information
v Application development information
v Business intelligence information
v DB2 Connect information
v Getting started information
v Tutorial information
v Optional component information
v Release notes

The following tables describe, for each book in the DB2 library, the
information needed to order the hard copy, print or view the PDF, or locate
the HTML directory for that book. A full description of each of the books in
the DB2 library is available from the IBM Publications Center at
www.ibm.com/shop/publications/order

The installation directory for the HTML documentation CD differs for each
category of information:
htmlcdpath/doc/htmlcd/%L/category

where:

© Copyright IBM Corp. 1993 - 2002 327

http://www.ibm.com/shop/publications/order


v htmlcdpath is the directory where the HTML CD is installed.
v %L is the language identifier. For example, en_US.
v category is the category identifier. For example, core for the core DB2

information.

In the PDF file name column in the following tables, the character in the sixth
position of the file name indicates the language version of a book. For
example, the file name db2d1e80 identifies the English version of the
Administration Guide: Planning and the file name db2d1g80 identifies the
German version of the same book. The following letters are used in the sixth
position of the file name to indicate the language version:

Language Identifier
Arabic w
Brazilian Portuguese b
Bulgarian u
Croatian 9
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Romanian 8
Russian r
Simp. Chinese c
Slovakian 7
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

No form number indicates that the book is only available online and does not
have a printed version.

328 Building and Running Applications



Core DB2 information
The information in this category cover DB2 topics that are fundamental to all
DB2 users. You will find the information in this category useful whether you
are a programmer, a database administrator, or you work with DB2 Connect,
DB2 Warehouse Manager, or other DB2 products.

The installation directory for this category is doc/htmlcd/%L/core.

Table 27. Core DB2 information

Name Form Number PDF File Name

IBM DB2 Universal Database
Command Reference

SC09-4828 db2n0x80

IBM DB2 Universal Database
Glossary

No form number db2t0x80

IBM DB2 Universal Database
Master Index

SC09-4839 db2w0x80

IBM DB2 Universal Database
Message Reference, Volume 1

GC09-4840 db2m1x80

IBM DB2 Universal Database
Message Reference, Volume 2

GC09-4841 db2m2x80

IBM DB2 Universal Database
What’s New

SC09-4848 db2q0x80

Administration information
The information in this category covers those topics required to effectively
design, implement, and maintain DB2 databases, data warehouses, and
federated systems.

The installation directory for this category is doc/htmlcd/%L/admin.

Table 28. Administration information

Name Form number PDF file name

IBM DB2 Universal Database
Administration Guide:
Planning

SC09-4822 db2d1x80

IBM DB2 Universal Database
Administration Guide:
Implementation

SC09-4820 db2d2x80

IBM DB2 Universal Database
Administration Guide:
Performance

SC09-4821 db2d3x80

IBM DB2 Universal Database
Administrative API Reference

SC09-4824 db2b0x80

Appendix A. DB2 Universal Database technical information 329



Table 28. Administration information (continued)

Name Form number PDF file name

IBM DB2 Universal Database
Data Movement Utilities Guide
and Reference

SC09-4830 db2dmx80

IBM DB2 Universal Database
Data Recovery and High
Availability Guide and
Reference

SC09-4831 db2hax80

IBM DB2 Universal Database
Data Warehouse Center
Administration Guide

SC27-1123 db2ddx80

IBM DB2 Universal Database
Federated Systems Guide

GC27-1224 db2fpx80

IBM DB2 Universal Database
Guide to GUI Tools for
Administration and
Development

SC09-4851 db2atx80

IBM DB2 Universal Database
Replication Guide and Reference

SC27-1121 db2e0x80

IBM DB2 Installing and
Administering a Satellite
Environment

GC09-4823 db2dsx80

IBM DB2 Universal Database
SQL Reference, Volume 1

SC09-4844 db2s1x80

IBM DB2 Universal Database
SQL Reference, Volume 2

SC09-4845 db2s2x80

IBM DB2 Universal Database
System Monitor Guide and
Reference

SC09-4847 db2f0x80

Application development information
The information in this category is of special interest to application developers
or programmers working with DB2. You will find information about
supported languages and compilers, as well as the documentation required to
access DB2 using the various supported programming interfaces, such as
embedded SQL, ODBC, JDBC, SQLj, and CLI. If you view this information
online in HTML you can also access a set of DB2 sample programs in HTML.

330 Building and Running Applications



The installation directory for this category is doc/htmlcd/%L/ad.

Table 29. Application development information

Name Form number PDF file name

IBM DB2 Universal Database
Application Development
Guide: Building and Running
Applications

SC09-4825 db2axx80

IBM DB2 Universal Database
Application Development
Guide: Programming Client
Applications

SC09-4826 db2a1x80

IBM DB2 Universal Database
Application Development
Guide: Programming Server
Applications

SC09-4827 db2a2x80

IBM DB2 Universal Database
Call Level Interface Guide and
Reference, Volume 1

SC09-4849 db2l1x80

IBM DB2 Universal Database
Call Level Interface Guide and
Reference, Volume 2

SC09-4850 db2l2x80

IBM DB2 Universal Database
Data Warehouse Center
Application Integration Guide

SC27-1124 db2adx80

IBM DB2 XML Extender
Administration and
Programming

SC27-1234 db2sxx80

Business intelligence information
The information in this category describes how to use components that
enhance the data warehousing and analytical capabilities of DB2 Universal
Database.

The installation directory for this category is doc/htmlcd/%L/wareh.

Table 30. Business intelligence information

Name Form number PDF file name

IBM DB2 Warehouse Manager
Information Catalog Center
Administration Guide

SC27-1125 db2dix80

IBM DB2 Warehouse Manager
Installation Guide

GC27-1122 db2idx80

Appendix A. DB2 Universal Database technical information 331



DB2 Connect information
The information in this category describes how to access host or iSeries data
using DB2 Connect Enterprise Edition or DB2 Connect Personal Edition.

The installation directory for this category is doc/htmlcd/%L/conn.

Table 31. DB2 Connect information

Name Form number PDF file name

APPC, CPI-C, and SNA Sense
Codes

No form number db2apx80

IBM Connectivity Supplement No form number db2h1x80

IBM DB2 Connect Quick
Beginnings for DB2 Connect
Enterprise Edition

GC09-4833 db2c6x80

IBM DB2 Connect Quick
Beginnings for DB2 Connect
Personal Edition

GC09-4834 db2c1x80

IBM DB2 Connect User’s
Guide

SC09-4835 db2c0x80

Getting started information
The information in this category is useful when you are installing and
configuring servers, clients, and other DB2 products.

The installation directory for this category is doc/htmlcd/%L/start.

Table 32. Getting started information

Name Form number PDF file name

IBM DB2 Universal Database
Quick Beginnings for DB2
Clients

GC09-4832 db2itx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Servers

GC09-4836 db2isx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Personal Edition

GC09-4838 db2i1x80

IBM DB2 Universal Database
Installation and Configuration
Supplement

GC09-4837 db2iyx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Data Links Manager

GC09-4829 db2z6x80

332 Building and Running Applications



Tutorial information
Tutorial information introduces DB2 features and teaches how to perform
various tasks.

The installation directory for this category is doc/htmlcd/%L/tutr.

Table 33. Tutorial information

Name Form number PDF file name

Business Intelligence Tutorial:
Introduction to the Data
Warehouse

No form number db2tux80

Business Intelligence Tutorial:
Extended Lessons in Data
Warehousing

No form number db2tax80

Development Center Tutorial
for Video Online using
Microsoft Visual Basic

No form number db2tdx80

Information Catalog Center
Tutorial

No form number db2aix80

Video Central for e-business
Tutorial

No form number db2twx80

Visual Explain Tutorial No form number db2tvx80

Optional component information
The information in this category describes how to work with optional DB2
components.

The installation directory for this category is doc/htmlcd/%L/opt.

Table 34. Optional component information

Name Form number PDF file name

IBM DB2 Life Sciences Data
Connect Planning, Installation,
and Configuration Guide

GC27-1235 db2lsx80

IBM DB2 Spatial Extender
User’s Guide and Reference

SC27-1226 db2sbx80

IBM DB2 Universal Database
Data Links Manager
Administration Guide and
Reference

SC27-1221 db2z0x80

Appendix A. DB2 Universal Database technical information 333



Table 34. Optional component information (continued)

Name Form number PDF file name

IBM DB2 Universal Database
Net Search Extender
Administration and
Programming Guide
Note: HTML for this
document is not installed
from the HTML
documentation CD.

SH12-6740 N/A

Release notes
The release notes provide additional information specific to your product’s
release and FixPak level. They also provides summaries of the documentation
updates incorporated in each release and FixPak.

Table 35. Release notes

Name Form number PDF file name HTML directory

DB2 Release Notes See note. See note. doc/prodcd/%L/db2ir

where %L is the
language identifier.

DB2 Connect Release
Notes

See note. See note. doc/prodcd/%L/db2cr

where %L is the
language identifier.

DB2 Installation Notes Available on
product CD-ROM
only.

Available on
product CD-ROM
only.

Note: The HTML version of the release notes is available from the
Information Center and on the product CD-ROMs. To view the ASCII
file:
v On UNIX-based platforms, see the Release.Notes file. This file is

located in the DB2DIR/Readme/%L directory, where %L represents
the locale name and DB2DIR represents:
– /usr/opt/db2_08_01 on AIX
– /opt/IBM/db2/V8.1 on all other UNIX operating systems

v On other platforms, see the RELEASE.TXT file. This file is located in
the directory where the product is installed.

Related tasks:

v “Printing DB2 books from PDF files” on page 335

334 Building and Running Applications



v “Ordering printed DB2 books” on page 336
v “Accessing online help” on page 336
v “Finding product information by accessing the DB2 Information Center

from the administration tools” on page 340
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 341

Printing DB2 books from PDF files

You can print DB2 books from the PDF files on the DB2 PDF Documentation
CD. Using Adobe Acrobat Reader, you can print either the entire book or a
specific range of pages.

Prerequisites:

Ensure that you have Adobe Acrobat Reader. It is available from the Adobe
Web site at www.adobe.com

Procedure:

To print a DB2 book from a PDF file:
1. Insert the DB2 PDF Documentation CD. On UNIX operating systems,

mount the DB2 PDF Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start Adobe Acrobat Reader.
3. Open the PDF file from one of the following locations:

v On Windows operating systems:
x:\doc\language directory, where x represents the CD-ROM drive letter
and language represents the two-character territory code that represents
your language (for example, EN for English).

v On UNIX operating systems:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

Related tasks:

v “Ordering printed DB2 books” on page 336
v “Finding product information by accessing the DB2 Information Center

from the administration tools” on page 340
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 341

Related reference:

Appendix A. DB2 Universal Database technical information 335

http://www.adobe.com/


v “Overview of DB2 Universal Database technical information” on page 327

Ordering printed DB2 books

Procedure:

To order printed books:
v Contact your IBM authorized dealer or marketing representative. To find a

local IBM representative, check the IBM Worldwide Directory of Contacts at
www.ibm.com/shop/planetwide

v Phone 1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.
v Visit the IBM Publications Center at

www.ibm.com/shop/publications/order

Related tasks:

v “Printing DB2 books from PDF files” on page 335
v “Finding topics by accessing the DB2 Information Center from a browser”

on page 338
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 341

Related reference:

v “Overview of DB2 Universal Database technical information” on page 327

Accessing online help

The online help that comes with all DB2 components is available in three
types:
v Window and notebook help
v Command line help
v SQL statement help

Window and notebook help explain the tasks that you can perform in a
window or notebook and describe the controls. This help has two types:
v Help accessible from the Help button
v Infopops

The Help button gives you access to overview and prerequisite information.
The infopops describe the controls in the window or notebook. Window and
notebook help are available from DB2 centers and components that have user
interfaces.

336 Building and Running Applications

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order


Command line help includes Command help and Message help. Command
help explains the syntax of commands in the command line processor.
Message help describes the cause of an error message and describes any
action you should take in response to the error.

SQL statement help includes SQL help and SQLSTATE help. DB2 returns an
SQLSTATE value for conditions that could be the result of an SQL statement.
SQLSTATE help explains the syntax of SQL statements (SQL states and class
codes).

Note: SQL help is not available for UNIX operating systems.

Procedure:

To access online help:
v For window and notebook help, click Help or click that control, then click

F1. If the Automatically display infopops check box on the General page
of the Tool Settings notebook is selected, you can also see the infopop for a
particular control by holding the mouse cursor over the control.

v For command line help, open the command line processor and enter:
– For Command help:

? command

where command represents a keyword or the entire command.

For example, ? catalog displays help for all the CATALOG commands,
while ? catalog database displays help for the CATALOG DATABASE
command.

v For Message help:
? XXXnnnnn

where XXXnnnnn represents a valid message identifier.

For example, ? SQL30081 displays help about the SQL30081 message.
v For SQL statement help, open the command line processor and enter:

– For SQL help:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code
represents the first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, while ? 08
displays help for the 08 class code.

– For SQLSTATE help:

Appendix A. DB2 Universal Database technical information 337



help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the SELECT statement.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 338

v “Viewing technical documentation online directly from the DB2 HTML
Documentation CD” on page 341

Finding topics by accessing the DB2 Information Center from a browser

The DB2 Information Center accessed from a browser enables you to access
the information you need to take full advantage of DB2 Universal Database
and DB2 Connect. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, metadata,
Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser is composed of the
following major elements:

Navigation tree
The navigation tree is located in the left frame of the browser window.
The tree expands and collapses to show and hide topics, the glossary,
and the master index in the DB2 Information Center.

Navigation toolbar
The navigation toolbar is located in the top right frame of the browser
window. The navigation toolbar contains buttons that enable you to
search the DB2 Information Center, hide the navigation tree, and find
the currently displayed topic in the navigation tree.

Content frame
The content frame is located in the bottom right frame of the browser
window. The content frame displays topics from the DB2 Information
Center when you click on a link in the navigation tree, click on a
search result, or follow a link from another topic or from the master
index.

Prerequisites:

To access the DB2 Information Center from a browser, you must use one of
the following browsers:
v Microsoft Explorer, version 5 or later
v Netscape Navigator, version 6.1 or later

338 Building and Running Applications



Restrictions:

The DB2 Information Center contains only those sets of topics that you chose
to install from the DB2 HTML Documentation CD. If your Web browser returns
a File not found error when you try to follow a link to a topic, you must
install one or more additional sets of topics DB2 HTML Documentation CD.

Procedure:

To find a topic by searching with keywords:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.
Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

To find a topic in the navigation tree:
1. In the navigation tree, click the book icon of the category of topics related

to your area of interest. A list of subcategories displays underneath the
icon.

2. Continue to click the book icons until you find the category containing
the topics in which you are interested. Categories that link to topics
display the category title as an underscored link when you move the
cursor over the category title. The navigation tree identifies topics with a
page icon.

3. Click the topic link. The topic displays in the content frame.

To find a topic or term in the master index:
1. In the navigation tree, click the “Index” category. The category expands to

display a list of links arranged in alphabetical order in the navigation tree.
2. In the navigation tree, click the link corresponding to the first character of

the term relating to the topic in which you are interested. A list of terms
with that initial character displays in the content frame. Terms that have
multiple index entries are identified by a book icon.

3. Click the book icon corresponding to the term in which you are
interested. A list of subterms and topics displays below the term you
clicked. Topics are identified by page icons with an underscored title.

4. Click on the title of the topic that meets your needs. The topic displays in
the content frame.

Appendix A. DB2 Universal Database technical information 339



Related concepts:

v “Accessibility” on page 347
v “DB2 Information Center for topics” on page 349

Related tasks:

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 340

v “Updating the HTML documentation installed on your machine” on page
342

v “Troubleshooting DB2 documentation search with Netscape 4.x” on page
344

v “Searching the DB2 documentation” on page 345

Related reference:

v “Overview of DB2 Universal Database technical information” on page 327

Finding product information by accessing the DB2 Information Center from the
administration tools

The DB2 Information Center provides quick access to DB2 product
information and is available on all operating systems for which the DB2
administration tools are available.

The DB2 Information Center accessed from the tools provides six types of
information.

Tasks Key tasks you can perform using DB2.

Concepts
Key concepts for DB2.

Reference
DB2 reference information, such as keywords, commands, and APIs.

Troubleshooting
Error messages and information to help you with common DB2
problems.

Samples
Links to HTML listings of the sample programs provided with DB2.

Tutorials
Instructional aid designed to help you learn a DB2 feature.

Prerequisites:

340 Building and Running Applications



Some links in the DB2 Information Center point to Web sites on the Internet.
To display the content for these links, you will first have to connect to the
Internet.

Procedure:

To find product information by accessing the DB2 Information Center from
the tools:
1. Start the DB2 Information Center in one of the following ways:

v From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

v At the command line, enter db2ic.
2. Click the tab of the information type related to the information you are

attempting to find.
3. Navigate through the tree and click on the topic in which you are

interested. The Information Center will then launch a Web browser to
display the information.

4. To find information without browsing the lists, click the Search icon to the
right of the list.
Once the Information Center has launched a browser to display the
information, you can perform a full-text search by clicking the Search icon
in the navigation toolbar.

Related concepts:

v “Accessibility” on page 347
v “DB2 Information Center for topics” on page 349

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 338

v “Searching the DB2 documentation” on page 345

Viewing technical documentation online directly from the DB2 HTML
Documentation CD

All of the HTML topics that you can install from the DB2 HTML
Documentation CD can also be read directly from the CD. Therefore, you can
view the documentation without having to install it.

Restrictions:

Appendix A. DB2 Universal Database technical information 341



Because the following items are installed from the DB2 product CD and not
the DB2 HTML Documentation CD, you must install the DB2 product to view
these items:
v Tools help
v DB2 Quick Tour
v Release notes

Procedure:

1. Insert the DB2 HTML Documentation CD. On UNIX operating systems,
mount the DB2 HTML Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start your HTML browser and open the appropriate file:
v For Windows operating systems:

e:\Program Files\sqllib\doc\htmlcd\%L\index.htm

where e represents the CD-ROM drive, and %L is the locale of the
documentation that you wish to use, for example, en_US for English.

v For UNIX operating systems:
/cdrom/Program Files/sqllib/doc/htmlcd/%L/index.htm

where /cdrom/ represents where the CD is mounted, and %L is the locale
of the documentation that you wish to use, for example, en_US for
English.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 338

v “Copying files from the DB2 HTML Documentation CD to a Web Server”
on page 344

Related reference:

v “Overview of DB2 Universal Database technical information” on page 327

Updating the HTML documentation installed on your machine

It is now possible to update the HTML installed from the DB2 HTML
Documentation CD when updates are made available from IBM. This can be
done in one of two ways:
v Using the Information Center (if you have the DB2 administration GUI

tools installed).
v By downloading and applying a DB2 HTML documentation FixPak .

342 Building and Running Applications



Note: This will NOT update the DB2 code; it will only update the HTML
documentation installed from the DB2 HTML Documentation CD.

Procedure:

To use the Information Center to update your local documentation:
1. Start the DB2 Information Center in one of the following ways:

v From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

v At the command line, enter db2ic.
2. Ensure your machine has access to the external Internet; the updater will

download the latest documentation FixPak from the IBM server if
required.

3. Select Information Center —> Update Local Documentation from the
menu to start the update.

4. Supply your proxy information (if required) to connect to the external
Internet.

The Information Center will download and apply the latest documentation
FixPak, if one is available.

To manually download and apply the documentation FixPak :
1. Ensure your machine is connected to the Internet.
2. Open the DB2 support page in your Web browser at:

www.ibm.com/software/data/db2/udb/winos2unix/support.
3. Follow the link for version 8 and look for the ″Documentation FixPaks″

link.
4. Determine if the version of your local documentation is out of date by

comparing the documentation FixPak level to the documentation level you
have installed. This current documentation on your machine is at the
following level: DB2 v8.1 GA.

5. If there is a more recent version of the documentation available then
download the FixPak applicable to your operating system. There is one
FixPak for all Windows platforms, and one FixPak for all UNIX platforms.

6. Apply the FixPak:
v For Windows operating systems: The documentation FixPak is a self

extracting zip file. Place the downloaded documentation FixPak in an
empty directory, and run it. It will create a setup command which you
can run to install the documentation FixPak.

v For UNIX operating systems: The documentation FixPak is a
compressed tar.Z file. Uncompress and untar the file. It will create a
directory named delta_install with a script called installdocfix. Run
this script to install the documentation FixPak.

Appendix A. DB2 Universal Database technical information 343

http://www.ibm.com/software/data/db2/udb/winos2unix/support


Related tasks:

v “Copying files from the DB2 HTML Documentation CD to a Web Server”
on page 344

Related reference:

v “Overview of DB2 Universal Database technical information” on page 327

Copying files from the DB2 HTML Documentation CD to a Web Server

The entire DB2 information library is delivered to you on the DB2 HTML
Documentation CD, so you can install the library on a Web server for easier
access. Simply copy to your Web server the documentation for the languages
that you want.

Procedure:

To copy files from the DB2 HTML Documentation CD to a Web server, use the
appropriate path:
v For Windows operating systems:

E:\Program Files\sqllib\doc\htmlcd\%L\*.*

where E represents the CD-ROM drive and %L represents the language
identifier.

v For UNIX operating systems:
/cdrom:Program Files/sqllib/doc/htmlcd/%L/*.*

where cdrom represents the CD-ROM drive and %L represents the language
identifier.

Related tasks:

v “Searching the DB2 documentation” on page 345

Related reference:

v “Supported DB2 interface languages, locales, and code pages” in the Quick
Beginnings for DB2 Servers

v “Overview of DB2 Universal Database technical information” on page 327

Troubleshooting DB2 documentation search with Netscape 4.x

Most search problems are related to the Java support provided by web
browsers. This task describes possible workarounds.

Procedure:

344 Building and Running Applications



A common problem with Netscape 4.x involves a missing or misplaced
security class. Try the following workaround, especially if you see the
following line in the browser Java console:
Cannot find class java/security/InvalidParameterException

v On Windows operating systems:
From the DB2 HTML Documentation CD, copy the supplied x:Program
Files\sqllib\doc\htmlcd\locale\InvalidParameterException.class file to
the java\classes\java\security\ directory relative to your Netscape
browser installation, where x represents the CD-ROM drive letter and locale
represents the name of the desired locale.

Note: You may have to create the java\security\ subdirectory structure.
v On UNIX operating systems:

From the DB2 HTML Documentation CD, copy the supplied /cdrom/Program
Files/sqllib/doc/htmlcd/locale/InvalidParameterException.class file to
the java/classes/java/security/ directory relative to your Netscape
browser installation, where cdrom represents the mount point of the
CD-ROM and locale represents the name of the desired locale.

Note: You may have to create the java/security/ subdirectory structure.

If your Netscape browser still fails to display the search input window, try the
following:
v Stop all instances of Netscape browsers to ensure that there is no Netscape

code running on the machine. Then open a new instance of the Netscape
browser and try to start the search again.

v Purge the browser’s cache.
v Try a different version of Netscape, or a different browser.

Related tasks:

v “Searching the DB2 documentation” on page 345

Searching the DB2 documentation

To search DB2’s documentation, you need Netscape 6.1 or higher, or
Microsoft’s Internet Explorer 5 or higher. Ensure that your browser’s Java
support is enabled.

A pop-up search window opens when you click the search icon in the
navigation toolbar of the Information Center accessed from a browser. If you
are using the search for the first time it may take a minute or so to load into
the search window.

Restrictions:

Appendix A. DB2 Universal Database technical information 345



The following restrictions apply when you use the documentation search:
v Boolean searches are not supported. The boolean search qualifiers and and

or will be ignored in a search. For example, the following searches would
produce the same results:
– servlets and beans
– servlets or beans

v Wildcard searches are not supported. A search on java* will only look for
the literal string java* and would not, for example, find javadoc.

In general, you will get better search results if you search for phrases instead
of single words.

Procedure:

To search the DB2 documentation:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.
Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

Note: When you perform a search, the first result is automatically loaded into
your browser frame. To view the contents of other search results, click
on the result in results lists.

Related tasks:

v “Troubleshooting DB2 documentation search with Netscape 4.x” on page
344

Online DB2 troubleshooting information

With the release of DB2® UDB Version 8, there will no longer be a
Troubleshooting Guide. The troubleshooting information once contained in this
guide has been integrated into the DB2 publications. By doing this, we are
able to deliver the most up-to-date information possible. To find information
on the troubleshooting utilities and functions of DB2, access the DB2
Information Center from any of the tools.

Refer to the DB2 Online Support site if you are experiencing problems and
want help finding possible causes and solutions. The support site contains a

346 Building and Running Applications



large, constantly updated database of DB2 publications, TechNotes, APAR
(product problem) records, FixPaks, and other resources. You can use the
support site to search through this knowledge base and find possible solutions
to your problems.

Access the Online Support site at
www.ibm.com/software/data/db2/udb/winos2unix/support, or by clicking
the Online Support button in the DB2 Information Center. Frequently
changing information, such as the listing of internal DB2 error codes, is now
also available from this site.

Related concepts:

v “DB2 Information Center for topics” on page 349

Related tasks:

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 340

Accessibility

Accessibility features help users with physical disabilities, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features in DB2® Universal Database Version 8:
v DB2 allows you to operate all features using the keyboard instead of the

mouse. See “Keyboard Input and Navigation”.
v DB2 enables you customize the size and color of your fonts. See “Accessible

Display” on page 348.
v DB2 allows you to receive either visual or audio alert cues. See “Alternative

Alert Cues” on page 348.
v DB2 supports accessibility applications that use the Java™ Accessibility API.

See “Compatibility with Assistive Technologies” on page 348.
v DB2 comes with documentation that is provided in an accessible format.

See “Accessible Documentation” on page 348.

Keyboard Input and Navigation

Keyboard Input
You can operate the DB2 Tools using only the keyboard. You can use keys or
key combinations to perform most operations that can also be done using a
mouse.

Appendix A. DB2 Universal Database technical information 347

http://www.ibm.com/software/data/db2/udb/winos2unix/support


Keyboard Focus
In UNIX-based systems, the position of the keyboard focus is highlighted,
indicating which area of the window is active and where your keystrokes will
have an effect.

Accessible Display
The DB2 Tools have features that enhance the user interface and improve
accessibility for users with low vision. These accessibility enhancements
include support for customizable font properties.

Font Settings
The DB2 Tools allow you to select the color, size, and font for the text in
menus and dialog windows, using the Tools Settings notebook.

Non-dependence on Color
You do not need to distinguish between colors in order to use any of the
functions in this product.

Alternative Alert Cues
You can specify whether you want to receive alerts through audio or visual
cues, using the Tools Settings notebook.

Compatibility with Assistive Technologies
The DB2 Tools interface supports the Java Accessibility API enabling use by
screen readers and other assistive technologies used by people with
disabilities.

Accessible Documentation
Documentation for the DB2 family of products is available in HTML format.
This allows you to view documentation according to the display preferences
set in your browser. It also allows you to use screen readers and other
assistive technologies.

DB2 tutorials

The DB2® tutorials help you learn about various aspects of DB2 Universal
Database. The tutorials provide lessons with step-by-step instructions in the
areas of developing applications, tuning SQL query performance, working
with data warehouses, managing metadata, and developing Web services
using DB2.

Before you begin:

Before you can access these tutorials using the links below, you must install
the tutorials from the DB2 HTML Documentation CD-ROM.

348 Building and Running Applications



If you do not want to install the tutorials, you can view the HTML versions of
the tutorials directly from the DB2 HTML Documentation CD. PDF versions of
these tutorials are also available on the DB2 PDF Documentation CD.

Some tutorial lessons use sample data or code. See each individual tutorial for
a description of any prerequisites for its specific tasks.

DB2 Universal Database tutorials:

If you installed the tutorials from the DB2 HTML Documentation CD-ROM,
you can click on a tutorial title in the following list to view that tutorial.

Business Intelligence Tutorial: Introduction to the Data Warehouse Center
Perform introductory data warehousing tasks using the Data
Warehouse Center.

Business Intelligence Tutorial: Extended Lessons in Data Warehousing
Perform advanced data warehousing tasks using the Data Warehouse
Center.

Development Center Tutorial for Video Online using Microsoft® Visual Basic
Build various components of an application using the Development
Center Add-in for Microsoft Visual Basic.

Information Catalog Center Tutorial
Create and manage an information catalog to locate and use metadata
using the Information Catalog Center.

Video Central for e-business Tutorial
Develop and deploy an advanced DB2 Web Services application using
WebSphere® products.

Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance
using Visual Explain.

DB2 Information Center for topics

The DB2® Information Center gives you access to all of the information you
need to take full advantage of DB2 Universal Database™ and DB2 Connect™

in your business. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, the
Information Catalog Center, Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser has the following
features:

Regularly updated documentation
Keep your topics up-to-date by downloading updated HTML.

Appendix A. DB2 Universal Database technical information 349

../tutr/db2tu/index.htm
../tutr/db2ta/index.htm
../tutr/db2td/index.htm
../tutr/db2ai/index.htm
../tutr/db2tw/index.htm
../tutr/db2tv/index.htm


Search
Search all of the topics installed on your workstation by clicking
Search in the navigation toolbar.

Integrated navigation tree
Locate any topic in the DB2 library from a single navigation tree. The
navigation tree is organized by information type as follows:
v Tasks provide step-by-step instructions on how to complete a goal.
v Concepts provide an overview of a subject.
v Reference topics provide detailed information about a subject,

including statement and command syntax, message help,
requirements.

Master index
Access the information in topics and tools help from one master
index. The index is organized in alphabetical order by index term.

Master glossary
The master glossary defines terms used in the DB2 Information
Center. The glossary is organized in alphabetical order by glossary
term.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 338

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 340

v “Updating the HTML documentation installed on your machine” on page
342

350 Building and Running Applications



Appendix B. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993 - 2002 351



improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information that has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

352 Building and Running Applications



All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious, and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source
language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix B. Notices 353



Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both, and have been used
in at least one of the documents in the DB2 UDB documentation library.

ACF/VTAM
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
BookManager
C Set++
C/370
CICS
Database 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eServer
Extended Services
FFST
First Failure Support Technology
IBM
IMS
IMS/ESA
iSeries

LAN Distance
MVS
MVS/ESA
MVS/XA
Net.Data
NetView
OS/390
OS/400
PowerPC
pSeries
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/400
SQL/DS
System/370
System/390
SystemView
Tivoli
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WebSphere
WIN-OS/2
z/OS
zSeries

The following terms are trademarks or registered trademarks of other
companies and have been used in at least one of the documents in the DB2
UDB documentation library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

354 Building and Running Applications



Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service
marks of others.

Appendix B. Notices 355



356 Building and Running Applications



Index

A
accessibility

features 347
ActiveX data objects

sample programs design 62
support in the DB2 AD Client 3
Visual Basic sample program

files 86
Visual C++ sample program

files 88
with Visual Basic 291
with Visual C++ 297

APIs
AIX IBM COBOL

applications 180
AIX Micro Focus COBOL

applications 187
C applications on AIX 150
C applications on HP-UX 197
C applications on Linux 231
C applications on Solaris

Operating Environment 255
C/C++ applications on

Windows 300
C/C++ sample program files 69
C++ applications on AIX 161
C++ applications on HP-UX 209
C++ applications on Linux 242
C++ applications Solaris

Operating Environment 268
COBOL sample program files 80
HP-UX Micro Focus COBOL

applications 222
Solaris Operating Environment

Micro Focus COBOL
applications 281

VisualAge C++ configuration file
on AIX 174

Windows IBM COBOL
applications 311

Windows Micro Focus COBOL
applications 317

applets
building JDBC 111
building SQLJ 117
JDBC sample program files 74
miscellaneous tips 109
SQLJ sample program files 77

B
batch files

description of 94
build files

description of 94
for AIX C multi-threaded

applications 160
for AIX C++ multi-threaded

applications 171
for AIX IBM COBOL

applications 180
for AIX IBM COBOL

routines 183
for AIX Micro Focus COBOL

applications 187
for AIX Micro Focus COBOL

routines 190
for C applications on AIX 150
for C applications on

HP-UX 197
for C applications on Linux 231
for C applications on Solaris 255
for C routines on AIX 154
for C routines on HP-UX 201
for C routines on Linux 235
for C routines on Solaris 260
for C/C++ applications on

Windows 300
for C/C++ routines on

Windows 304
for C++ applications on AIX 161
for C++ applications on

HP-UX 209
for C++ applications on

Linux 242
for C++ applications on

Solaris 268
for C++ routines on AIX 165
for C++ routines on HP-UX 213
for C++ routines on Linux 246
for C++ routines on Solaris 273
for HP-UX C multi-threaded

applications 207
for HP-UX C++ multi-threaded

applications 219
for HP-UX Micro Focus COBOL

applications 222
for HP-UX Micro Focus COBOL

routines 226

build files (continued)
for Linux C multi-threaded

applications 241
for Linux C++ multi-threaded

applications 252
for Solaris C multi-threaded

applications 265
for Solaris C++ multi-threaded

applications 278
for Solaris Micro Focus COBOL

applications 281
for Solaris Micro Focus COBOL

routines 284
for Windows IBM COBOL

applications 311
for Windows IBM COBOL

routines 314
for Windows Micro Focus

COBOL applications 317
for Windows Micro Focus

COBOL routines 320

C
C

applications
building on AIX 150
building on HP-UX 197
building on Linux 231
building on Solaris Operating

Environment 255
building on Windows 300

build files 94
error-checking utility files 101
makefiles 97
multi-threaded applications

AIX 160
HP-UX 207
Linux 241
Solaris Operating

Environment 265
routines

building on AIX 154
building on HP-UX 201
building on Linux 235
building on Solaris Operating

Environment 260
building on Windows 304

sample program files 69
sample programs design 62

© Copyright IBM Corp. 1993 - 2002 357



C (continued)
versions supported

AIX 9
HP-UX 11
Linux 12
Solaris Operating

Environment 14
Windows 15

C++
ADO Applications with Visual

C++ 297
AIX versions supported 9
applications

building on AIX 161
building on HP-UX 209
building on Linux 242
building on Solaris Operating

Environment 268
building on Windows 300

build files 94
error-checking utility files 101
HP-UX versions supported 11
Linux versions supported 12
makefiles 97
multi-threaded applications

AIX 171
HP-UX 219
Linux 252
Solaris Operating

Environment 278
OLE automation with Visual

C++ 299
routines

building on AIX 165
building on HP-UX 213
building on Linux 246
building on Solaris Operating

Environment 273
building on Windows 304

sample program files 69
sample programs design 62
Solaris Operating Environment

versions supported 14
VisualAge configuration files on

AIX 173
Windows versions supported 15

CALL statements
and stored procedures 143

CLI sample program files 72
COBOL language

AIX IBM applications 180
AIX IBM compiler 179
AIX IBM routines 183
AIX Micro Focus

applications 187

COBOL language (continued)
AIX Micro Focus compiler 186
AIX Micro Focus routines 190
AIX versions supported 9
build files 94
error-checking utility files 101
HP-UX Micro Focus

applications 222
HP-UX Micro Focus

routines 226
HP-UX versions supported 11
installing and running on

AIX 149
make files 97
sample program files 80
Solaris Micro Focus

applications 281
Solaris Micro Focus

compiler 281
Solaris Micro Focus routines 284
Solaris Operating System

versions supported 14
using the HP-UX Micro Focus

compiler 221
Windows IBM applications 311
Windows IBM compiler 310
Windows IBM routines 314
Windows Micro Focus

applications 317
Windows Micro Focus

compiler 316
Windows Micro Focus

routines 320
Windows versions supported 15

command line processor (CLP)
DB2 AD Client 3
sample files 90

compilers
AIX versions supported 9
build files for 94
HP-UX versions supported 11
Linux versions supported 12
makefiles for 97
Solaris versions supported 14
using AIX IBM COBOL 179
using AIX Micro Focus

COBOL 186
using HP-UX Micro Focus

COBOL 221
using Solaris Micro Focus

COBOL 281
using Windows IBM

COBOL 310
using Windows Micro Focus

COBOL 316

compilers (continued)
Windows versions supported 15

configuration files
for VisualAge C++ on AIX 173

CREATE statement
and AIX routines 148

D
DB2 CLI sample program files 72
DB2 documentation search

using Netscape 4.x 344
DB2 Information Center 349
DB2 tutorials 348
DB2_SQLROUTINE_COMPILE

_COMMAND environment
variable 23

DB2_SQLROUTINE_COMPILER
_PATH environment variable 23

DB2INSTANCE environment
variable 42

DB2INSTPROF environment
variable 5

DB2PATH environment variable 5
disability 347

E
embedded SQL

AIX IBM COBOL
applications 180

AIX IBM COBOL routines 183
AIX Micro Focus COBOL

applications 187
AIX Micro Focus COBOL

routines 190
build files 94
C applications, building on

AIX 150
C applications, building on

HP-UX 197
C applications, building on

Linux 231
C applications, building on

Solaris Operating
Environment 255

C routines, building on AIX 154
C routines, building on

HP-UX 201
C routines, building on

Linux 235
C routines, building on Solaris

Operating Environment 260
C/C++ applications, building on

Windows 300
C/C++ routines, building on

Windows 304

358 Building and Running Applications



embedded SQL (continued)
C/C++ sample program files 69
C++ applications, building on

AIX 161
C++ applications, building on

HP-UX 209
C++ applications, building on

Linux 242
C++ applications, building on

Solaris Operating
Environment 268

C++ routines, building on
AIX 165

C++ routines, building on
HP-UX 213

C++ routines, building on
Linux 246

C++ routines, building on Solaris
Operating Environment 273

COBOL sample program files 80
error-checking utility files 101
HP-UX Micro Focus COBOL

applications 222
HP-UX Micro Focus COBOL

routines 226
multi-threaded C applications on

AIX 160
multi-threaded C applications on

HP-UX 207
multi-threaded C applications on

Linux 241
multi-threaded C applications on

Solaris Operating
Environment 265

multi-threaded C++ applications
on AIX 171

multi-threaded C++ applications
on HP-UX 219

multi-threaded C++ applications
on Linux 252

multi-threaded C++ applications
on Solaris 278

Solaris Operating Environment
Micro Focus COBOL
applications 281

Solaris Operating Environment
Micro Focus COBOL
routines 284

support in the DB2 AD Client 3
VisualAge C++ configuration file

on AIX 175
Windows IBM COBOL

applications 311
Windows IBM COBOL

routines 314

embedded SQL (continued)
Windows Micro Focus COBOL

applications 317
Windows Micro Focus COBOL

routines 320
entry points for routines, AIX 148
EXTERNAL NAME clause of the

CREATE statement 148

F
flagger, SQL 92 and MVS

Conformance 3
FORTRAN language

DB2 support 8

G
GET ROUTINE CLP command 140
GET_ROUTINE_SAR built-in stored

procedure 140

H
host systems

creating the sample database 44
supported servers 7

I
instances

database manager 5

J
Java

AIX environment setup 28
AIX JDK versions supported 9
applets

points for using 109
building

JDBC applets 111
JDBC applications 112
JDBC routines 113
SQLj applets 117
SQLj applications 116, 119
SQLj routines 125

environment setup 22
HP-UX environment setup 28
HP-UX JDK versions

supported 11
JDBC

sample program files 74
Linux

environment setup 29
JDK versions supported 12

makefiles 97
plugin sample files 79
sample

directories 107
programs design 62

Java (continued)
Solaris Operating Environment

JDK versions supported 14
setup 30

SQLj (Embedded SQL for Java)
sample program files 77

support,, DB2 AD Client 3
UNIX environment setup 26
WebSphere sample files 79
Windows

environment setup 38
JDK versions supported 15

JDBC
applets, points for using 109
building applets 111
building applications 112
building routines 113
sample program files 74
support in the DB2 AD Client 3

JDK_PATH, Database Manager
configuration keyword 21

K
KEEPFENCED, Database Manager

configuration keyword 21

L
log management user exit sample

files 93

M
makefile

commands 97
description 97

migrating
applications 48

multi-threaded applications
build files for 94

multi-threaded applications, building
with AIX C 160
with AIX C++ 171
with HP-UX C 207
with HP-UX C++ 219
with Linux C 241
with Linux C++ 252
with Solaris C 265
with Solaris C++ 278

N
NOCONVERT option 289

O
Object Linking and Embedding

automation
with Visual Basic 296
with Visual C++ 299

Index 359



Object Linking and Embedding
(continued)

database table functions
description 290
sample files 90

sample program files 89
support in the DB2 AD Client 3

Object REXX on Windows 323
OLE DB provider

for ODBC with Visual C++ 297
OLE DB provider for DB2

for DB2 with Visual Basic 291
for DB2 with Visual C++ 297
for ODBC with Visual Basic 291

online
help, accessing 336

operating systems
AIX versions supported 9
DB2 install paths for 48
HP-UX versions supported 11
Linux versions supported 12
Solaris versions supported 14
supported by DB2 8
Windows versions supported 15

ordering DB2 books 336

P
Perl

DB2 support 8
PHP, DB2 support for 8
printed books, ordering 336
PUT ROUTINE CLP command 140
PUT_ROUTINE_SAR stored

procedure 140

R
RDO applications, building with

Visual Basic 294
Remote Data Objects sample

program files 86
REXX language

AIX versions supported 9
building AIX applications 194
building Windows

applications 323
DB2 support 8
support in the DB2 AD Client 3
Windows versions supported 15

routines
AIX entry points for 148
build files 94
building AIX IBM COBOL 183
building AIX Micro Focus

COBOL 190
building C on AIX 154

routines (continued)
building C on HP-UX 201
building C on Linux 235
building C on Solaris Operating

Environment 260
building C/C++ on

Windows 304
building C++ on AIX 165
building C++ on HP-UX 213
building C++ on Linux 246
building C++ on Solaris

Operating Environment 273
building HP-UX Micro Focus

COBOL 226
building JDBC 113
building Solaris Micro Focus

COBOL 284
building SQLJ 125
building Windows IBM

COBOL 314
building Windows Micro Focus

COBOL 320
C/C++ sample program files 69
COBOL sample program files 80
CREATE statement on AIX 148
JDBC sample program files 74
loading a COBOL shared library

on AIX 149
SQL procedures sample program

files 84
SQLJ sample program files 77

S
sample database

binding 46
cataloging 45
creating 42
creating on host systems 44
setting up 42

samples
programs

design 62
directories 57
file extensions 57
Java sample directories

for 107
supported languages 57

SQL procedures
backing up and restoring 139
CALL statement 143
calling with UNIX client

applications 134
calling with Windows client

applications 135
creating 133

SQL procedures (continued)
customizing precompile and bind

options 138
distributing compiled 140
environment setup 23
retaining intermediate files 137
sample program files 84
UNIX environment setup 31
Windows environment setup 40

SQLJ (embedded SQL for Java)
applets

building 117
using 109

applications
building 119

build files 94
programs

building 116
routines, building 125
sample program files 77
support in the DB2 AD Client 3

stored procedures
build files for 94
building C

AIX 154
HP-UX 201
Linux 235
Solaris Operating

Environment 260
Windows 304

building C++
AIX 165
HP-UX 213
Linux 246
Solaris Operating

Environment 273
Windows 304

building COBOL
AIX IBM 183
AIX Micro Focus 190
HP-UX Micro Focus 226
Solaris Micro Focus 284
Windows IBM 314
Windows Micro Focus 320

building JDBC 113
building SQLJ 125
C/C++ sample program files 69
COBOL sample program files 80
JDBC sample program files 74
OLE automation with Visual

Basic 296
OLE automation with Visual

C++ 299
SQLJ sample program files 77

360 Building and Running Applications



stored procedures (continued)
VisualAge C++ configuration file

on AIX 176

T
table functions

OLE DB 290
troubleshooting

DB2 documentation search 344
online information 346

tutorials 348

U
user-defined functions (UDFs)

build files for 94
C

AIX 154
HP-UX 201
Linux 235
Solaris Operating

Environment 260
C/C++

sample program files 69
Windows 304

C++
AIX 165
HP-UX 213
Linux 246
Solaris Operating

Environment 273
COBOL sample program files 80
JDBC 113
JDBC sample program files 74
OLE automation with Visual

Basic 296
OLE automation with Visual

C++ 299
SQLj 125
SQLj sample program files 77
VisualAge C++ configuration file

on AIX 177
utilities

error-checking files 101

V
Visual Basic

building ADO applications 291
building RDO applications 294
OLE automation 296
sample program design 62
sample program files 86
Windows versions supported 15

Visual C++ sample program
files 88

W
wchar_t data type

convert precompile option 289
WCHARTYPE CONVERT

precompile option 289
Windows Management

Instrumentation (WMI)
samples 291

Index 361



362 Building and Running Applications



Contacting IBM

In the United States, call one of the following numbers to contact IBM:
v 1-800-237-5511 for customer service
v 1-888-426-4343 to learn about available service options
v 1-800-IBM-4YOU (426-4968) for DB2 marketing and sales

In Canada, call one of the following numbers to contact IBM:
v 1-800-IBM-SERV (1-800-426-7378) for customer service
v 1-800-465-9600 to learn about available service options
v 1-800-IBM-4YOU (1-800-426-4968) for DB2 marketing and sales

To locate an IBM office in your country or region, check IBM’s Directory of
Worldwide Contacts on the web at www.ibm.com/planetwide

Product information

Information regarding DB2 Universal Database products is available by
telephone or by the World Wide Web at
www.ibm.com/software/data/db2/udb

This site contains the latest information on the technical library, ordering
books, client downloads, newsgroups, FixPaks, news, and links to web
resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the
IBM Worldwide page at www.ibm.com/planetwide

© Copyright IBM Corp. 1993 - 2002 363

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide


����

Part Number: CT17WNA

Printed in U.S.A.

SC09-4825-00

(1
P)

P/
N:

CT
17
WN
A



Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
®

D
B

2
U

ni
ve

rs
al

D
at

ab
as

e™

Bu
ild

in
g

an
d

Ru
nn

in
g

Ap
pl

ic
at

io
ns

Ve
rs

io
n

8


	Contents
	About This Book
	Part 1. The Application Development Environment
	Chapter 1. DB2 Support
	DB2 Application Development Client
	Database Manager Instances
	DB2 Supported Servers
	DB2 Supported Software for Building and Running Applications
	Supported Software by Platform
	AIX Supported Software for Building and Running Applications
	HP-UX Supported Software for Building and Running Applications
	Linux Supported Software for Building and Running Applications
	Solaris Supported Software for Building and Running Applications
	Windows Supported Software for Building and Running Applications


	Chapter 2. Setup
	General Setup Information
	Setting Up the Application Development Environment
	Updating the Database Manager Configuration File
	Setting Up the Java Environment
	Setting Up the SQL Procedures Environment

	UNIX
	Setting Up the UNIX Application Development Environment
	UNIX Environment Variable Settings
	Java
	Setting Up the UNIX Java Environment
	Setting Up the AIX Java Environment
	Setting Up the HP-UX Java Environment
	Setting Up the Linux Java Environment
	Setting Up the Solaris Java Environment

	SQL Procedures
	Setting Up the UNIX SQL Procedures Environment
	UNIX Default DB2 SQLROUTINE COMPILE COMMAND Values


	Windows
	Setting Up the Windows Application Development Environment
	Java
	Setting Up the Windows Java Environment
	Windows Java Environment Settings

	SQL Procedures
	Setting Up the Windows SQL Procedures Environment


	Sample Database
	Setting Up the sample Database
	Creating the sample Database
	Creating the sample Database on Host or AS/400 and iSeries Servers
	Cataloging the sample Database
	Binding the sample Database Utilities

	Migrating Applications
	Where to Go Next

	Chapter 3. Sample Programs and Related Files
	Sample Files
	Sample Programs: Structure and Design
	Sample Programs by Language and Application Interface
	C/C++ Samples
	DB2 CLI Samples
	JDBC Samples
	SQLJ Samples
	Java WebSphere Samples
	Java Plugin Samples
	COBOL Samples
	SQL Procedure Samples
	Visual Basic Samples
	Visual C++ Samples
	Windows Management Instrumentation Samples
	Object Linking and Embedding (OLE) Samples
	Object Linking and Embedding Database (OLE DB) Table Function Samples
	Command Line Processor (CLP) Samples
	REXX Samples
	Log Management User Exit Samples

	Build Files, Makefiles, and Error-Checking Utilities
	Build Files
	Makefiles
	Error-Checking Utilities


	Part 2. Building and Running Platform-Independent Applications
	Chapter 4. Java
	Java Sample Programs
	Java Applet Considerations
	JDBC
	Building JDBC Applets
	Building JDBC Applications
	Building JDBC Routines

	SQLJ
	Building SQLJ Programs
	Building SQLJ Applets
	Building SQLJ Applications
	UNIX Build Script for SQLJ Applications and Applets
	SQLJ Application Options for UNIX
	Windows Batch File for SQLJ Applications and Applets
	SQLJ Application Options for Windows
	Building SQLJ Routines
	UNIX Build Script for SQLJ Routines
	SQLJ Stored Procedure Options for UNIX
	Windows Batch File for SQLJ Routines
	SQLJ Stored Procedure Options for Windows


	Chapter 5. SQL Procedures
	Creating SQL Procedures
	Calling SQL Procedures with Client Applications on UNIX
	Calling SQL Procedures with Client Applications on Windows
	Retaining Intermediate Files for SQL Procedures
	Customizing Precompile and Bind Options for SQL Procedures
	Backing Up and Restoring SQL Procedures
	Distributing Compiled SQL Procedures
	Rebinding SQL Procedures

	Chapter 6. Calling Stored Procedures
	Calling Stored Procedures with the CALL Statement

	Part 3. Building and Running Platform-Specific Applications
	Chapter 7. AIX
	Important Considerations
	AIX Export Files for Routines
	AIX Routines and the CREATE Statement
	Replacing an AIX Shared Library
	Considerations for Installing COBOL on AIX

	IBM C
	Building C Applications on AIX
	Build Script for C Applications
	AIX C Application Compile and Link Options
	Building C Routines on AIX
	Build Script for C Routines
	AIX C Routine Compile and Link Options
	Building C Multi-Threaded Applications on AIX
	Build Script for C Multi-threaded Applications

	VisualAge C++
	Building C++ Applications on AIX
	Build Script for C++ Applications
	AIX C++ Application Compile and Link Options
	Building C++ Routines on AIX
	Build Script for C++ Routines
	AIX C++ Routine Compile and Link Options
	Building C++ Multi-Threaded Applications on AIX
	Build Script for C++ Multi-threaded Applications

	VisualAge C++ Configuration Files
	Building VisualAge C++ Programs with Configuration Files
	Building C++ DB2 API Applications with Configuration Files
	Building C++ Embedded SQL Applications with Configuration Files
	Building C++ Stored Procedures with Configuration Files
	Building C++ User-defined Functions with Configuration Files

	IBM COBOL Set for AIX
	Configuring the IBM COBOL Compiler on AIX
	Building IBM COBOL Applications on AIX
	Build Script for IBM COBOL Applications
	AIX IBM COBOL Application Compile and Link Options
	Building IBM COBOL Routines on AIX
	Build Script for IBM COBOL Routines
	AIX IBM COBOL Routine Compile and Link Options

	Micro Focus COBOL
	Configuring the Micro Focus COBOL Compiler on AIX
	Building Micro Focus COBOL Applications on AIX
	Build Script for Micro Focus COBOL Applications
	AIX Micro Focus COBOL Application Compile and Link Options
	Building Micro Focus COBOL Routines on AIX
	Build Script for Micro Focus COBOL Routines
	AIX Micro Focus COBOL Routine Compile and Link Options

	REXX
	Building REXX Applications on AIX


	Chapter 8. HP-UX
	HP-UX C
	Building C Applications on HP-UX
	Build Script for C Applications
	HP-UX C Application Compile and Link Options
	Building C Routines on HP-UX
	Build Script for C Routines
	HP-UX C Routine Compile and Link Options
	Building C Multi-Threaded Applications on HP-UX
	Build Script for C Multi-threaded Applications

	HP-UX C++
	Building C++ Applications on HP-UX
	Build Script for C++ Applications
	HP-UX C++ Application Compile and Link Options
	Building C++ Routines on HP-UX
	Build Script for C++ Routines
	HP-UX C++ Routine Compile and Link Options
	Building C++ Multi-Threaded Applications on HP-UX
	Build Script for C++ Multi-threaded Applications

	Micro Focus COBOL
	Configuring the Micro Focus COBOL Compiler on HP-UX
	Building Micro Focus COBOL Applications on HP-UX
	Build Script for Micro Focus COBOL Applications
	HP-UX Micro Focus COBOL Application Compile and Link Options
	Building Micro Focus COBOL Routines on HP-UX
	Build Script for Micro Focus COBOL Routines
	HP-UX Micro Focus COBOL Routine Compile and Link Options


	Chapter 9. Linux
	Linux C
	Building C Applications on Linux
	Build Script for C Applications
	Linux C Application Compile and Link Options
	Building C Routines on Linux
	Build Script for C Routines
	Linux C Routine Compile and Link Options
	Building C Multi-Threaded Applications on Linux
	Build Script for C Multi-threaded Applications

	Linux C++
	Building C++ Applications on Linux
	Build Script for C++ Applications
	Linux C++ Application Compile and Link Options
	Building C++ Routines on Linux
	Build Script for C++ Routines
	Linux C++ Routine Compile and Link Options
	Building C++ Multi-Threaded Applications on Linux
	Build Script for C++ Multi-threaded Applications


	Chapter 10. Solaris
	Forte C
	Building C Applications on Solaris
	Build Script for C Applications
	Solaris C Application Compile and Link Options
	Building C Routines on Solaris
	Build Script for C Routines
	Solaris C Routine Compile and Link Options
	Building C Multi-Threaded Applications on Solaris
	Build Script for C Multi-threaded Applications

	Forte C++
	Building C++ Applications on Solaris
	Build Script for C++ Applications
	Solaris C++ Application Compile and Link Options
	Building C++ Routines on Solaris
	Build Script for C++ Routines
	Solaris C++ Routine Compile and Link Options
	Building C++ Multi-Threaded Applications on Solaris
	Build Script for C++ Multi-threaded Applications

	Micro Focus COBOL
	Configuring the Micro Focus COBOL Compiler on Solaris
	Building Micro Focus COBOL Applications on Solaris
	Build Script for Micro Focus COBOL Applications
	Solaris Micro Focus COBOL Application Compile and Link Options
	Building Micro Focus COBOL Routines on Solaris
	Build Script for Micro Focus COBOL Routines
	Solaris Micro Focus COBOL Routine Compile and Link Options


	Chapter 11. Windows Operating Systems
	WCHARTYPE CONVERT Precompile Option
	Object Linking and Embedding Database (OLE DB) Table Functions
	Windows Management Instrumentation (WMI)
	Microsoft Visual Basic
	Building ADO Applications with Visual Basic
	Building RDO Applications with Visual Basic
	Object Linking and Embedding (OLE) Automation with Visual Basic

	Microsoft Visual C++
	Building ADO Applications with Visual C++
	Object Linking and Embedding (OLE) Automation with Visual C++
	Building C/C++ Applications on Windows
	Batch File for C/C++ Applications
	Windows C/C++ Application Compile and Link Options
	Building C/C++ Routines on Windows
	Batch File for C/C++ Routines
	Windows C/C++ Routine Compile and Link Options

	IBM VisualAge COBOL
	Configuring the IBM COBOL Compiler on Windows
	Building IBM COBOL Applications on Windows
	Batch File for IBM COBOL Applications
	Windows IBM COBOL Application Compile and Link Options
	Building IBM COBOL Routines on Windows
	Batch File for IBM COBOL Routines
	Windows IBM COBOL Routine Compile and Link Options

	Micro Focus COBOL
	Configuring the Micro Focus COBOL Compiler on Windows
	Building Micro Focus COBOL Applications on Windows
	Batch File for Micro Focus COBOL Applications
	Windows Micro Focus COBOL Application Compile and Link Options
	Building Micro Focus COBOL Routines on Windows
	Batch File for Micro Focus COBOL Routines
	Windows Micro Focus COBOL Routine Compile and Link Options

	Object REXX
	Building Object REXX Applications on Windows


	Part 4. Appendixes
	Appendix A. DB2 Universal Database technical information
	Overview of DB2 Universal Database technical information
	Categories of DB2 technical information
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes


	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Accessing online help
	Finding topics by accessing the DB2 Information Center from a browser
	Finding product information by accessing the DB2 Information Center from the administration tools
	Viewing technical documentation online directly from the DB2 HTML Documentation CD
	Updating the HTML documentation installed on your machine
	Copying files from the DB2 HTML Documentation CD to a Web Server
	Troubleshooting DB2 documentation search with Netscape 4.x
	Searching the DB2 documentation
	Online DB2 troubleshooting information
	Accessibility
	Keyboard Input and Navigation
	Keyboard Input
	Keyboard Focus

	Accessible Display
	Font Settings
	Non-dependence on Color

	Alternative Alert Cues
	Compatibility with Assistive Technologies
	Accessible Documentation

	DB2 tutorials
	DB2 Information Center for topics

	Appendix B. Notices
	Trademarks

	Index
	Contacting IBM
	Product information


